Vaned diffusers in centrifugal compressor stages are used to achieve higher stage pressure ratios, higher stage efficiencies, and more compact designs. The interaction of the stationary diffuser with the impeller can lead to resonant vibration with potentially devastating effects. This paper presents unsteady diffuser vane surface pressure measurements using in-house developed, flush mounted, fast response piezoresistive pressure transducers. The unsteady pressures were recorded for nine operating conditions, covering a wide range of the compressor map. Experimental work was complemented by 3D unsteady computational fluid dynamics (CFD) simulations using ansys cfx V12.1 to detail the unsteady diffuser aerodynamics. Pressure fluctuations of up to 34.4% of the inlet pressure were found. High pressure variations are present all along the vane and are not restricted to the leading edge region. Frequency analysis of the measured vane surface pressures show that reduced impeller loading, and the corresponding reduction of tip leakage fluid changes the characteristics of the fluctuations from a main blade count to a total blade count. The unsteady pressure fluctuations in the diffuser originate from three distinct locations. The impact of the jet-wake flow leaving the impeller results in high variation close to the leading edge. It was observed that CFD results overpredicted the amplitude of the pressure fluctuation on average by 62%.

References

References
1.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.10.1115/1.2817053
2.
Shum
,
Y. K. P.
,
Tan
,
C. S.
, and
Cumpsty
,
N. A.
,
2000
, “
Impeller–Diffuser Interaction in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
122
(
4
), pp.
777
786
.10.1115/1.1308570
3.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller– Diffuser Interaction—Part I: Influence on the Performance
,”
ASME J. Turbomach.
,
125
(
1
), pp.
173
182
.10.1115/1.1516814
4.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller– Diffuser Interaction—Part II: Detailed Flow Analysis
,”
ASME J. Turbomach.
,
125
(
1
), pp.
183
192
.10.1115/1.1516815
5.
Salim
,
B.
,
2009
, “
Effect of Intracomponental Aerodynamic Interaction on the Performance of a Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part G
,
223
(
G3
), pp.
245
255
.10.1243/09544100JAERO425
6.
Krain
,
H.
,
2002
, “
Unsteady Diffuser Flow in a Transonic Centrifugal Compressor
,”
Int. J. Rotating Mach.
,
8
(
3
), pp.
222
231
.
7.
Koumoutsos
,
A.
,
Tourlidakis
,
A.
, and
Elder
,
R. L.
,
2000
, “
Computational Studies of Unsteady Flows in a Centrifugal Compressor Stage
,”
Proc. Inst. Mech. Eng., Part A
,
214
(
A6
), pp.
611
633
.10.1243/0957650001538146
8.
Ibaraki
,
S.
,
Matsuo
,
T.
, and
Yokoyama
,
T.
,
2007
, “
Investigation of Unsteady Flow Field in a Vaned Diffuser of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
129
(
4
), pp.
686
693
.10.1115/1.2720505
9.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2010
, “
Numerical Analysis of the Vaned Diffuser of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
132
(
4
), p.
041012
.10.1115/1.2988481
10.
Pinarbasi
,
A.
, and
Johnson
,
M. W.
,
1994
, “
Detailed Flow Measurements in a Centrifugal-Compressor Vaneless Diffuser
,”
ASME J. Turbomach.
,
116
(
3
), pp.
453
461
.10.1115/1.2929432
11.
Gallier
,
K.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2010
, “
Particle Image Velocimetry Characterization of High-Speed Centrifugal Compressor Impeller–Diffuser Interaction
,”
J. Propul. Power
,
26
(
4
), pp.
784
789
.10.2514/1.38663
12.
Engeda
,
A.
,
2001
, “
The Unsteady Performance of a Centrifugal Compressor With Different Diffusers
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
A5
), pp.
585
599
.10.1243/0957650011538820
13.
Sinha
,
M.
,
Pinarbasi
,
A.
, and
Katz
,
J.
,
2001
, “
The Flow Structure During Onset and Developed States of Rotating Stall Within a Vaned Diffuser of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
490
499
.10.1115/1.1374213
14.
Schleer
,
M.
,
Mokulys
,
T.
, and
Abhari
,
R.
,
2003
, “Design of a High Pressure-Ratio Centrifugal Compressor for Studying Reynolds Number Effects,” IMechE International Conference on Compressors and their Systems, London, UK, Sept. 8–10, pp.
391
404
.
15.
Schleer
,
M.
, and
Abhari
,
R.
,
2006
, “
Clearance Effects on the Evolution of the Flow in the Vaneless Diffuser of a Centrifugal Compressor at Part Load Condition
,”
ASME
Paper No. GT2006-90083.10.1115/GT2006-90083
16.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2009
, “
Experimental Study on Impeller Blade Vibration During Resonance—Part I: Blade Vibration due to Inlet Flow Distortion
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022508
.10.1115/1.2968869
17.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2009
, “
Experimental Study on Impeller Blade Vibration During Resonance—Part II: Blade Damping
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022509
.10.1115/1.2968870
18.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2010
, “
Blade Forcing Function and Aerodynamic Work Measurements in a High Speed Centrifugal Compressor With Inlet Distortion
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
092504
.10.1115/1.4000614
19.
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2010
, “
The Cumulative Effects of Forcing Function, Damping, and Mistuning on Blade Forced Response in a High Speed Centrifugal Compressor With Inlet Distortion
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122505
.10.1115/1.4001084
20.
Zemp
,
A.
,
Kammerer
,
A.
, and
Abhari
,
R. S.
,
2010
, “
Unsteady Computational Fluid Dynamics Investigation on Inlet Distortion in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
132
(
3
), p.
031015
.10.1115/1.3147104
21.
Zemp
,
A.
, and
Abhari
,
R. S.
,
2013
, “
Vaned Diffuser Induced Impeller Blade Vibrations in a High-Speed Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021015
.10.1115/1.4007515
22.
Zemp
,
A.
,
2007
, “
CFD Investigation on Inlet Flow Distortion in a Centrifugal Compressor
,” Master's thesis,
ETH Zurich
, Zurich, Switzerland.10.3929/ethz-a-005388669
You do not currently have access to this content.