In the present paper, direct numerical simulation (DNS) studies of the compressible flow in the T106 linear cascade have been carried out. Various environmental variables, i.e., background turbulence level, frequency of incoming wakes, and Reynolds number, and a combination of these were considered for a total of 12 fully resolved simulations. The mechanisms dictating the observed flow phenomena, including the mixing and distortion of the incoming wakes, wake/boundary layer interaction, and boundary layer evolution impact on profile loss generation, are studied systematically. A detailed loss generation analysis allows the identification of each source of loss in boundary layers and flow core. Particular attention is devoted to the concerted impact of wakes distortion mechanics and the intermittent nature of the unsteady boundary layer. Further, the present study examines the validity of the Boussinesq eddy viscosity assumption, which invokes a linear stress–strain relationship in commonly used RANS models. The errors originating from this assumption are scrutinized with both time and phase-locked averaged flow fields to possibly identify shortcomings of traditional RANS models.

References

References
1.
Prakash
,
C.
,
Cherry
,
D. G.
,
Shin
,
H. W.
,
Machnaim
,
J.
,
Dailey
,
L.
,
Beacock
,
R.
,
Halstead
,
D.
,
Wadia
,
A. R.
,
Guillot
,
S.
, and
Ng
,
W. F.
,
2008
, “
Effect of Loading Level and Distribution on LPT Losses
,”
ASME
Paper No. GT2008-50052.10.1115/GT2008-50052
2.
Arndt
,
N.
,
1993
, “
Blade Row Interaction in a Multistage Low-Pressure Turbine
,”
ASME J. Turbomach.
,
115
(
1
), pp.
137
146
.10.1115/1.2929198
3.
Halstead
,
D.
,
Wisler
,
D.
,
Okiishi
,
T.
,
Walker
,
G.
,
Hodson
,
H.
, and
Shin
,
H.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
,
119
(
1
), pp.
114
127
.10.1115/1.2841000
4.
Coull
,
J. D.
,
Thomas
,
R. L.
, and
Hodson
,
H. P.
,
2010
, “
Velocity Distributions for Low Pressure Turbines
,”
ASME J. Turbomach.
,
132
(
4
), p.
041006
.10.1115/1.3192149
5.
Stadtmüller
,
P.
, and
Fottner
,
L.
,
2001
, “
A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly-Loaded LP Turbine Cascade Blade
,”
ASME
Paper No. 2001-GT-0311.10.1115/2001-GT-0311
6.
Stadtmüller
,
P.
,
2001
, “
Investigation of Wake-Induced Transition on the LP Turbine Cascade T106A-EIZ
,”
DFG-Verbundprojekt Fo 136/11 Version 1.1
,
University of the Armed Forces
,
Munich, Germany
.
7.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2003
, “
Direct Numerical Simulation, Large Eddy Simulation and Unsteady Reynolds-Averaged Navier–Stokes Simulations of Periodic Unsteady Flow in a Low-Pressure Turbine Cascade: A Comparison
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
4
), pp.
403
411
.10.1243/095765003322315469
8.
Medic
,
G.
, and
Sharma
,
O. P.
,
2012
, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
ASME
Paper No. GT2012-68878.10.1115/GT2012-68878
9.
Langtry
,
R.
, and
Menter
,
F.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
10.
Keadle
,
K.
, and
McQuilling
,
M.
,
2013
, “
Evaluation of RANS Transition Modeling for High Lift LPT Flows at Low Reynolds Number
,”
ASME
Paper No. GT2013-95069.10.1115/GT2013-95069
11.
Walters
,
D. K. W.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flows
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
012401
.10.1115/1.2979230
12.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
,
1999
, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
,
398
, pp.
109
153
.10.1017/S0022112099006205
13.
Michelassi
,
V.
,
Fröhlich
,
J.
,
Rodi
,
W.
, and
Wissink
,
J. G.
,
2003
, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade With Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2156
.10.2514/2.6832
14.
Durbin
,
P.
, and
Wu
,
X.
,
2007
, “
Transition Beneath Vortical Disturbances
,”
Annu. Rev. Fluid Mech.
,
39
(1), pp.
107
128
.10.1146/annurev.fluid.39.050905.110135
15.
Edwards
,
T.
, and
Sandberg
,
R. D.
,
2011
, “
Parallelising HiPSTAR using OpenMP
,” CRAY Centre of Excellence, Project Report 2011, www.hector.ac.uk/coe/pdf/HiPSTAR_OMP_Report.pdf
16.
Sandberg
,
R. D.
,
Pichler
,
R.
, and
Chen
,
L. W.
,
2012
, “
Assessing the Sensitivity of Turbine Cascade Flow to Inflow Disturbances Using Direct Numerical Simulation
,”
13th International Symposium for Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachinery (ISUAAAT)
, Tokyo, Japan, Sept. 11–14.
17.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
(
2
), pp.
354
366
.10.1006/jcph.1993.1081
18.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
19.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
20.
Stewart
,
W. L.
,
1955
, “
Analysis of Two Dimensional Compressible Flow Loss Characteristics Downstream of Turbomachine Blade Rows in Terms of Basic Boundary Layer Characteristics
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Technical Note No. 3515.
21.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries
,
La Cañada Flintridge, CA
.
You do not currently have access to this content.