New geometric mistuning modeling approaches for integrally bladed rotors (IBRs) are developed for incorporating geometric perturbations to a fundamental disk–blade sector, particularly the disk–blade boundary or connection. Reduced-order models (ROMs) are developed from a Craig–Bampton component mode synthesis (C–B CMS) framework that is further reduced by a truncated set of interface modes that are obtained from an Eigen-analysis of the C–B CMS constraint degrees of freedom (DOFs). An investigation into using a set of tuned interface modes and tuned constraint modes for model reduction is then performed, which offers significant computational savings for subsequent analyses. Two configurations of disk–blade connection mistuning are investigated: as-measured principal component (PC) deviations and random perturbations to the interblade spacing. Furthermore, the perturbation sizes are amplified to investigate the significance of incorporating mistuned disk–blade connections during solid model generation from optically scanned geometries. Free and forced response results are obtained for each ROM and each disk–blade connection type and compared to full finite element model (FEM) solutions. It is shown that the developed methods provide accurate results with a reduction in solution time compared to the full FEM. In addition, results indicate that the inclusion of a mistuned disk–blade connection deviations are small or conditions where large perturbations are localized to a small areas of the disk–blade connection.

References

References
1.
Bendiksen
,
O.
,
2000
, “
Localization Phenomena in Structural Dynamics
,”
Chaos, Solitons Fractals
,
11
(
10
), pp.
1621
1660
.10.1016/S0960-0779(00)00013-8
2.
Castanier
,
M.
,
Ottarsson
,
G.
, and
Pierre
,
C.
,
1997
, “
A Reduced Order Modeling Technique for Mistuned Bladed Disks
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
439
447
.10.1115/1.2889743
3.
Yang
,
M.-T.
, and
Griffin
,
J.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
4.
Yang
,
M.-T.
, and
Griffin
,
J. H.
,
1997
, “
A Reduced Order Approach for the Vibration of Mistuned Bladed Disk Assemblies
,”
ASME J. Eng. Gas Turbines Power
,
119
(
1
), pp.
161
167
.10.1115/1.2815542
5.
Feiner
,
D.
, and
Griffin
,
J.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.10.1115/1.1508384
6.
Bladh
,
R.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part 1: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
7.
Vargiu
,
P.
,
Firrone
,
C.
,
Zucca
,
S.
, and
Gola
,
M.
,
2011
, “
A Reduced Order Model Based on Sector Mistuning for the Dynamic Analysis of Mistuned Bladed Disks
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
639
646
.10.1016/j.ijmecsci.2011.05.010
8.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
9.
Tran
,
D.-M.
,
2009
, “
Component Mode Synthesis Methods Using Partial Interface Modes: Application to Tuned and Mistuned Structures With Cyclic Symmetry
,”
Comput. Struct.
,
87
(
17–18
), pp.
1141
1153
.10.1016/j.compstruc.2009.04.009
10.
Yang
,
M.-T.
, and
Griffin
,
J.
,
1997
, “
Normalized Modal Eigenvalue Approach for Resolving Modal Interaction
,”
ASME J. Eng. Gas Turbines Power
,
119
(
3
), pp.
647
650
.10.1115/1.2817033
11.
Beck
,
J. A.
,
Brown
,
J. M.
,
Slater
,
J. C.
, and
Cross
,
C. J.
,
2012
, “
Probabilistic Mistuning Assessment Using Nominal and Geometry Based Mistuning Methods
,”
ASME J. Turbomach.
,
135
(
5
), p.
051004
.10.1115/1.4023103
12.
Brown
,
J. M.
,
2009
, “
Reduced Order Modeling Methods for Turbomachinery Design
,” Ph.D. thesis, Wright State University, Dayton, OH.
13.
Lim
,
S.-H.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2004
, “
Vibration Modeling of Bladed Disks Subject to Geometric Mistuning and Design Changes
,”
AIAA
Paper No. AIAA 2004-1686.10.2514/6.2004-1686
14.
Petrov
,
E.
,
Sanliturk
,
K.
, and
Ewins
,
D.
,
2002
, “
A New Method for Dynamic Analysis of Mistuned Bladed Disks Based on the Exact Relationship Between Tuned and Mistuned Systems
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
586
597
.10.1115/1.1451753
15.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
3
), p.
031007
.10.1115/1.2987237
16.
Sinha
,
A.
,
Hall
,
B.
,
Cassenti
,
B.
, and
Hilbert
,
G.
,
2008
, “
Vibratory Parameters of Blades From Coordinate Measurement Machine Data
,”
ASME J. Turbomach.
,
130
(
1
), p.
011013
.10.1115/1.2749293
17.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2011
, “
Reduced Order Modeling of a Bladed Rotor With Geometric Mistuning Via Estimated Deviations in Mass and Stiffness Matrices
,”
ASME
Paper No. DETC2011-47495, pp.
1201
1209
.10.1115/DETC2011-47495
18.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2012
, “
Reduced Order Model of a Multistage Bladed Rotor With Geometric Mistuning Via Modal Analyses of Finite Element Sectors
,”
ASME J. Turbomach.
,
134
(
4
), p.
041001
.10.1115/1.4003224
19.
Ganine
,
V.
,
Legrand
,
M.
,
Michalska
,
H.
, and
Pierre
,
C.
,
2009
, “
A Sparse Preconditioned Iterative Method for Vibration Analysis of Geometrically Mistuned Bladed Disks
,”
Comput. Struct.
,
87
(
5–6
), pp.
342
354
.10.1016/j.compstruc.2008.12.011
20.
Mbaye
,
M.
,
Soize
,
C.
, and
Ousty
,
J.-P.
,
2010
, “
A Reduced-Order Model of Detuned Cyclic Dynamical Systems With Geometric Modifications Using a Basis of Cyclic Modes
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
112502
.10.1115/1.4000805
21.
Avalos
,
J.
,
Mignolet
,
M. P.
, and
Soize
,
C.
,
2009
, “
Response of Bladed Disks With Mistuned Blade–Disk Interfaces
,”
ASME
Paper No. GT2009-59580.10.1115/GT2009-59580
22.
Beck
,
J.
,
Brown
,
J. M.
,
Slater
,
J. C.
, and
Cross
,
C.
,
2014
, “
Component Mode Reduced Order Models for Geometric Mistuning of Integrally Bladed Rotors
,”
AIAA J.
,
52
(
7
), pp.
1345
1356
.10.2514/1.J052420
23.
Kaszynski
,
A. A.
,
Beck
,
J. A.
, and
Brown
,
J. M.
,
2013
, “
Uncertainties of an Automated Optical 3D Geometry Measurement, Modeling, and Analysis Process for Mistuned Integrally Bladed Rotor Reverse Engineering
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102504
.10.1115/1.4025000
24.
Tran
,
D.-M.
,
2001
, “
Component Mode Synthesis Methods Using Interface Modes. Application to Structures With Cyclic Symmetry
,”
Comput. Struct.
,
79
(
2
), pp.
209
222
.10.1016/S0045-7949(00)00121-8
25.
Castanier
,
M. P.
,
Pierre
,
C.
, and
Tan
,
Y.-C.
,
2001
, “
Characteristic Constraint Modes for Component Mode Synthesis
,”
AIAA J.
,
39
(
6
), pp.
1182
1187
.10.2514/2.1433
26.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
27.
Craig
,
R. R.
,
2000
, “
Coupling of Substructures for Dynamic Analysis: An Overview
,”
Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit
, Atlanta, GA, Apr. 3–5, Paper No. AIAA 2000-1573.
28.
Bladh
,
R.
,
Pierre
,
C.
,
Castanier
,
M. P.
, and
Kruse
,
M. J.
,
2002
, “
Dynamic Response Predictions for a Mistuned Industrial Turbomachinery Rotor Using Reduced-Order Modeling
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
311
324
.10.1115/1.1447236
You do not currently have access to this content.