This paper applies a theoretical model developed recently to calculate the flow instability inception point in axial high speed compressors system with tip clearance. After the mean flow field is computed by 3D steady computational fluid dynamics (CFD) simulation, a body force approach, which is a function of flow field data and comprises of one inviscid part and the other viscid part, is taken to duplicate the physical sources of flow turning and loss. Further by applying appropriate boundary conditions and spectral collocation method, a group of homogeneous equations will yield from which the stability equation can be derived. The singular value decomposition (SVD) method is adopted over a series of fine grid points in frequency domain, and the onset point of flow instability can be judged by the imaginary part of the resultant eigenvalue. The first assessment is to check the applicability of the present model on calculating the stall margin of one single stage transonic compressors at 85% rotational speed. The reasonable prediction accuracy validates that this model can provide an unambiguous judgment on stall inception without numerous requirements of empirical relations of loss and deviation angle. It could possibly be employed to check overcomputed stall margin during the design phase of new high speed compressors. The following validation case is conducted to study the nontrivial role of tip clearance in rotating stall, and a parameter study is performed to investigate the effects of end wall body force coefficient on stall onset point calculation. It is verified that the present model could qualitatively predict the reduced stall margin by assuming a simplified body force model which represents the response of a large tip clearance on the unsteady flow field.

References

References
1.
Ludwig
,
G. R.
, and
Nenni
,
J. P.
,
1979
, “
Basic Studies of Rotating Stall in Axial Flow Compressors
,” Air Force Aero-Propulsion Laboratory, Wright-Patterson Air Force Base, OH, Report No. AFAPL-TR-79-2083.
2.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.10.1115/1.3239887
3.
Greitzer
,
E. M.
, and
Moore
,
F. K.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part II—Application
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
231
239
.10.1115/1.3239893
4.
Stenning
,
A. H.
,
1980
, “
Rotating Stall and Surge
,”
ASME J. Fluids Eng.
,
102
(
1
), pp.
14
20
.10.1115/1.3240618
5.
Gordon
,
K. A.
,
1998
, “
Three-Dimensional Rotating Stall Inception and Effects of Rotating Tip Clearance Asymmetry in Axial Compressors
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
6.
Sun
,
X. F.
,
1996
, “
On the Relation Between the Inception of Rotating Stall and Casing Treatment
,”
AIAA
Paper No. 96-2579. 10.2514/6.1996-2579
7.
Liu
,
X. H.
,
Sun
,
D. K.
,
Sun
,
X. F.
, and
Wang
,
X. Y.
,
2012
, “
Flow Stability Theory for Fan/Compressors With Annular Duct and Novel Casing Treatment
,”
Chin. J. Aeronaut.
,
25
(
2
), pp.
143
154
.10.1016/S1000-9361(11)60373-7
8.
Escuret
,
J. F.
, and
Garnier
,
V.
,
1994
, “
Numerical Simulations of Surge and Rotating Stall in Multi-Stage Axial Flow Compressors
,”
AIAA
Paper No. 94-3202. 10.2514/6.1994-3202
9.
Longley
,
J. P.
,
1997
, “
Calculating the Flow Field Behaviour of High-Speed Multi-Stage Compressors
,”
ASME
Paper No. 97-GT-468.
10.
Chima
,
R. V.
,
2006
, “
A Three-Dimensional Unsteady CFD Model of Compressor Stability
,”
ASME
Paper No. GT2006-90040. 10.1115/GT2006-90040
11.
Gong
,
Y.
,
Tan
,
C. S.
,
Gordon
,
K. A.
, and
Greitzer
,
E. M.
,
1999
, “
A Computational Model for Short Wavelength Stall Inception and Development in Multi-Stage Compressors
,”
ASME J. Turbomach.
,
121
(
4
), pp.
726
734
.10.1115/1.2836726
12.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Vo
,
H. D.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp.
735
742
.10.1115/1.2836727
13.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
11023
.10.1115/1.2750674
14.
Chen
,
J. P.
,
Hathaway
,
M. D.
, and
Herrick.
,
G. P.
,
2008
, “
Pre-Stall Behavior of a Transonic Axial Compressor Stage Via Time Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
(
4
), p.
041014
.10.1115/1.2812968
15.
Sun
,
X. F.
,
Liu
,
X. H.
,
Hou
,
R. W.
, and
Sun
,
D. K.
,
2013
, “
A General Theory of Flow-Instability Inception in Turbomachinery
,”
AIAA J.
,
51
(
7
), pp.
1675
1687
.10.2514/1.J052186
16.
Adamczyk
,
J. J.
,
Celestina
,
M.
, and
Greitzer
,
E. M.
,
1993
, “
The Role of Tip Clearance in High Speed Fan Stall
,”
ASME J. Turbomach.
,
115
(
1
), pp.
28
39
.10.1115/1.2929212
17.
Wernet
,
M. P.
,
Van Zante
,
D.
,
Strazisar
,
T. J
,
John
,
W. T.
, and
Prahst
,
P. S.
,
2005
, “
Characterization of the Tip Clearance Flow in an Axial Compressor Using 3-D Digital PIV
,”
Exp. Fluids
,
39
(
4
), pp.
743
753
.10.1007/s00348-005-0007-7
18.
Chima
,
R. V.
,
1998
, “
Calculation of Tip Clearance Effects in a Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
120
(
1
), pp.
131
140
.10.1115/1.2841374
19.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
,
1984
, ‘‘
Flow Phenomena in Compressor Casing Treatment
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
532
541
.10.1115/1.3239604
20.
Kerner
,
J
.,
2010
, “
An Assessment of Body Force Representations for Compressor Stall Simulation
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
21.
Liu
,
X. H.
,
Hou
,
R. W.
,
Sun
,
D. K.
, and
Sun
,
X. F.
, “
Flow Instability Inception Model of Compressors Based on Eigenvalue Theory
,”
2012
,
AIAA
Paper No. 2012-4156. 10.2514/6.2012-4156
22.
He
,
L.
,
1997
, “
Computational Study of Rotating-Stall Inception in Axial Compressors
,”
J. Propul. Power
,
13
(
1
), pp.
31
38
.10.2514/2.5147
23.
Xu
,
L.
,
2003
, “
Assessing Viscous Body Forces for Unsteady Calculations
,”
ASME J. Turbomach.
,
125
(
3
), pp.
425
432
.10.1115/1.1574823
24.
Koch
,
C.
,
1981
, “
Stalling Pressure Rise Capability of Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
103
(
4
), pp.
645
656
.10.1115/1.3230787
25.
Walker
,
T. K.
,
2009
, “
The Development and Requirements of a Body Force Database From Two-Dimensional and Streamline Curvature Calculations
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
26.
Malik
,
M. R.
,
1982
, “
Finite-Difference Solution of the Compressible Stability Eigenvalue Problem
,”
NASA Langley Research Center, Hampton,VA, Report No. NASA CR-3854
.
27.
Sun
,
X. F.
,
Sun
,
D. K.
, and
Yu
,
W. W.
,
2011
, “
A Model to Predict Stall Inception of Transonic Axial Flow Fan/Compressors
,”
Chin. J. Aeronaut.
,
24
(
6
), pp.
687
700
.10.1016/S1000-9361(11)60081-2
28.
Brazier-Smith
,
P. R.
, and
Scott
,
J. F.
,
1991
, “
On the Determination of the Dispersion Equations by Use of Winding Number Integrals
,”
J. Sound Vib.
,
145
(3), pp.
503
510
.10.1016/0022-460X(91)90119-5
29.
Ivansson
,
S.
, and
Karasalo
,
I.
,
1993
, “
Computation of Modal Numbers Using an Adaptive Winding-Number Integral Method With Error Control
,”
J. Sound Vib.
,
161
(
1
), pp.
173
180
.10.1016/0022-460X(93)90410-D
30.
Woodley
,
B. M.
, and
Peake
,
N.
,
1999
, “
Resonant Acoustic Frequencies of a Tandem Cascade. Part 1: Zero Relative Motion
,”
J. Fluid Mech.
,
393
(1), pp.
215
240
.10.1017/S0022112099005601
31.
Cooper
,
A. J.
,
Parry
,
A. B.
, and
Peake
,
N.
,
2004
, “
Acoustic Resonance in Aeroengine Intake Ducts
,”
ASME J. Turbomach.
,
126
(
3
), pp.
432
441
.10.1115/1.1776586
32.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2001
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
33.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratio of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TP-1338.
34.
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Frerchette
,
L. G.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
,
Bright
,
M. M.
, and
Strazisar
,
A. J.
,
1998
, “
Active Stabilization of Rotating Stall and Surge in a Transonic Single Stage Axial Compressor
,”
ASME J. Turbomach.
,
120
(
4
), pp.
625
636
.10.1115/1.2841772
35.
Moore
,
R. D.
, and
Reid
,
L.
,
1980
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratio of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 2.05
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TP-1659.
36.
Suder
,
K. L.
,
1997
, “
Blockage Development in a Transonic, Axial Compressor Rotor
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TM-113115.
You do not currently have access to this content.