Modern low pressure turbines (LPT) feature high pressure ratios and moderate Mach and Reynolds numbers, increasing the possibility of laminar boundary-layer separation on the blades. Upstream disturbances including background turbulence and incoming wakes have a profound effect on the behavior of separation bubbles and the type/location of laminar-turbulent transition and therefore need to be considered in LPT design. Unsteady Reynolds-averaged Navier–Stokes (URANS) are often found inadequate to resolve the complex wake dynamics and impact of these environmental parameters on the boundary layers and may not drive the design to the best aerodynamic efficiency. LES can partly improve the accuracy, but has difficulties in predicting boundary layer transition and capturing the delay of laminar separation with varying inlet turbulence levels. Direct numerical simulation (DNS) is able to overcome these limitations but has to date been considered too computationally expensive. Here, a novel compressible DNS code is presented and validated, promising to make DNS practical for LPT studies. Also, the sensitivity of wake loss coefficient with respect to freestream turbulence levels below 1% is discussed.

References

1.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.10.1115/1.2929110
2.
Halstead
,
D.
,
Wisler
,
D.
,
Okiishi
,
T.
,
Walker
,
G.
,
Hodson
,
H.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
,
119
(
1
), pp.
114
127
.10.1115/1.2841000
3.
Engber
,
M.
, and
Fottner
,
L.
,
1996
, “
The Effect of Incoming Wakes on Boundary Layer Transition of a Highly Loaded Turbine Cascade
,” 85th AGARD Propulsion and Energetic Panel (PEP) Symposium, Derby, UK, May 8–12, Paper No. 21.
4.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
(1), pp.
71
98
.10.1146/annurev.fluid.37.061903.175511
5.
Heinke
,
W.
,
König
,
S.
,
Matyschok
,
B.
,
Stoffel
,
B.
,
Fiala
,
A.
, and
Heinig
,
K.
,
2004
, “
Experimental Investigations on Steady Wake Effects in a High-Lift Turbine Cascade
,”
Exp. Fluids
,
37
(
4
), pp.
488
496
.10.1007/s00348-004-0832-0
6.
Keadle
,
K.
, and
McQuilling
,
M.
,
2013
, “
Evaluation of RANS Transition Modeling for High Lift LPT Flows at Low Reynolds Number
,”
ASME
Paper No. GT2013-95069. 10.1115/GT2013-95069
7.
Raverdy
,
B.
,
Mary
,
I.
,
Sagaut
,
P.
, and
Liamis
,
N.
,
2003
, “
High-Resolution Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade
,”
AIAA J.
,
41
(
3
), pp.
390
397
.10.2514/2.1989
8.
Matsuura
,
K.
, and
Kato
,
C.
,
2006
, “
Large-Eddy Simulation of Compressible Transitional Cascade Flows With and Without Incoming Free-Stream Turbulence
,”
JSME Intern. J. Ser. B
,
49
(
3
), pp.
660
669
.10.1299/jsmeb.49.660
9.
Sarkar
,
S.
,
2009
, “
Influence of Wake Structure on Unsteady Flow in a Low Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
131
(
4
), p.
041016
.10.1115/1.3072490
10.
Medic
,
G.
, and
Sharma
,
O. P.
,
2012
, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
ASME
Paper No. GT2012-68878. 10.1115/GT2012-68878
11.
Michelassi
,
V.
,
Wissink
,
J.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade With Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2156
.10.2514/2.6832
12.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
13.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439. 10.2514/6.1992-439
14.
Davidson
,
P. A.
,
2004
,
Turbulence: An Introduction for Scientists and Engineers
,
Oxford University Press
,
Oxford, UK
.
15.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Ann. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.10.1146/annurev.fluid.30.1.539
16.
Alam
,
M.
, and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
403
, pp.
223
250
.10.1017/S0022112099007119
17.
Spalart
,
P.
, and
Strelets
,
M.
,
2000
, “
Mechanisms of Transition and Heat Transfer in a Separation Bubble
,”
J. Fluid Mech.
,
403
, pp.
329
349
.10.1017/S0022112099007077
18.
Jones
,
L. E.
,
Sandberg
,
R.
, and
Sandham
,
N.
,
2008
, “
Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence
,”
J. Fluid Mech.
,
602
, pp.
175
207
.10.1017/S0022112008000864
19.
Wu
,
X.
, and
Durbin
,
P.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
.
20.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2003
, “
Direct Numerical Simulation, Large Eddy Simulation and Unsteady Reynolds-Averaged Navier–Stokes Simulations of Periodic Unsteady Flow in a Low-Pressure Turbine Cascade: A Comparison
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
4
), pp.
403
411
.10.1243/095765003322315469
21.
Wissink
,
J.
,
2003
, “
DNS of Separating, Low Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
Int. J. Heat Flow
,
24
(
4
), pp.
626
635
.10.1016/S0142-727X(03)00056-0
22.
Wissink
,
J.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulation of Flow and Heat Transfer in a Turbine Cascade With Incoming Wakes
,”
J. Fluid Mech.
,
569
, pp.
209
247
.10.1017/S002211200600262X
23.
Kennedy
,
C.
,
Carpenter
,
M.
, and
Lewis
,
R.
,
2000
, “
Low-Storage, Explicit Runge–Kutta Schemes for the Compressible Navier–Stokes Equations
,”
Appl. Numer. Math.
,
35
(
3
), pp.
177
219
.10.1016/S0168-9274(99)00141-5
24.
Kennedy
,
C.
, and
Gruber
,
A.
,
2008
, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier–Stokes Equations for a Compressible Fluid
,”
J. Comput. Phys.
,
227
(
3
), pp.
1676
1700
.10.1016/j.jcp.2007.09.020
25.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
26.
Kim
,
J.
, and
Sandberg
,
R.
,
2012
, “
Efficient Parallel Computing With a Compact Finite Difference Scheme
,”
Comput. Fluids
,
58
, pp.
70
87
.10.1016/j.compfluid.2012.01.004
27.
Kim
,
J.
, and
Lee
,
D.
,
2003
, “
Characteristic Interface Conditions for Multiblock High-Order Computation on Singular Structured Grid
,”
AIAA J.
,
41
(
12
), pp.
2341
2348
.10.2514/2.6858
28.
Michálek
,
J.
,
Monaldi
,
M.
, and
Arts
,
T.
,
2012
, “
Aerodynamic Performance of a Very High Lift Low Pressure Turbine Airfoil (T106C) at Low Reynolds and High Mach Number With Effect of Free Stream Turbulence Intensity
,”
ASME J. Turbomach.
,
134
(
6
), p.
061009
.10.1115/1.4006291
29.
Tabor
,
G.
, and
Baba-Ahmadi
,
M.
,
2010
, “
Inlet Conditions for Large Eddy Simulation: A Review
,”
Comput. Fluids
,
39
(
4
), pp.
553
567
.10.1016/j.compfluid.2009.10.007
30.
Touber
,
E.
, and
Sandham
,
N.
,
2009
, “
Large-Eddy Simulation of Low-Frequency Unsteadiness in a Turbulent Shock-Induced Separation Bubble
,”
Theor. Comput. Fluid Dyn.
,
23
(
2
), pp.
79
107
.10.1007/s00162-009-0103-z
31.
Sandberg
,
R.
,
Pichler
,
R.
, and
Chen
,
L.
,
2012
, “
Assessing the Sensitivity of Turbine Cascade Flow to Inflow Disturbances Using Direct Numerical Simulation
,”
13th International Symposium for Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachinery (ISUAAAT)
, Tokyo, Japan, Sept. 11–14.
32.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
,
1966
, “
The Use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence
,”
J. Fluid Mech.
,
25
(
4
), pp.
657
682
.10.1017/S0022112066000338
33.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
(
2
), pp.
354
366
.10.1006/jcph.1993.1081
34.
Schlanderer
,
S. C.
, and
Sandberg
,
R. D.
,
2013
, “
DNS of a Compliant Trailing Edge Flow
,”
AIAA
Paper No. 2013-2013. 10.2514/6.2013-2013
35.
Tam
,
C.
, and
Kurbatskii
,
K.
,
2000
, “
A Wavenumber Based Extrapolation and Interpolation Method for Use in Conjunction With High-Order Finite Difference Schemes
,”
J. Comput. Phys.
,
157
(
2
), pp.
588
617
.10.1006/jcph.1999.6393
36.
Höfler
,
T.
,
Siebert
,
C.
, and
Lumsdaine
,
A.
,
2010
, “
Scalable Communication Protocols for Dynamic Sparse Data Exchange
,”
2010 ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’10)
, Bangalore, India, Jan. 9–14, pp.
159
168
.
37.
Johnstone
,
R.
,
Chen
,
L.
, and
Sandberg
,
R.
,
2014
, “
A Sliding Characteristic Interface Condition for Direct Numerical Simulations
,”
Comput. Fluids
(submitted).
38.
Edwards
,
T.
, and
Sandberg
,
R. D.
,
2011
, “
Parallelising HiPSTAR Using OpenMP
,” Cray Centre of Excellence for HECToR, Edinburgh, UK, www.hector.ac.uk/coe/pdf/HiPSTAR_OMP_Report.pdf
39.
Mayer
,
C. S.
,
von Terzi
,
D. A.
, and
Fasel
,
H. F.
,
2011
, “
Direct Numerical Simulation of Complete Transition to Turbulence Via Oblique Breakdown at Mach 3
,”
J. Fluid Mech.
,
674
, pp.
5
42
.10.1017/S0022112010005094
40.
Sandberg
,
R. D.
,
2011
, “
An Axis Treatment for Flow Equations in Cylindrical Coordinates Based on Parity Conditions
,”
Comput. Fluids
,
49
(
1
), pp.
166
172
.10.1016/j.compfluid.2011.05.009
41.
Wu
,
X.
, and
Moin
,
P.
,
2008
, “
A Direct Numerical Simulation Study on the Mean Velocity Characteristics in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
608
, pp.
81
112
.10.1017/S0022112008002085
42.
Sandberg
,
R. D.
,
2012
, “
Numerical Investigation of Turbulent Supersonic Axisymmetric Wakes
,”
J. Fluid Mech.
,
702
, pp.
488
520
.10.1017/jfm.2012.201
43.
Sandberg
,
R.
,
Suponitsky
,
V.
, and
Sandham
,
N.
,
2012
, “
DNS of Compressible Pipe Flow Exiting Into a Coflow
,”
Int. J. Heat Fluid Flow
,
35
, pp.
33
44
.10.1016/j.ijheatfluidflow.2012.01.006
44.
Stadtmüller
,
P.
,
2001
, “
Investigation of Wake-Induced Transition on the LP Turbine Cascade T106 A-EIZ
,” DFG-Verbundprojekt Fo 136/11, Version 1.0., University of the Armed Forces, Munich, Germany.
45.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2002
, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments
,”
Flow, Turbul. Combust.
,
69
(
3–4
), pp.
295
329
.10.1023/A:1027334303200
46.
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2006
, “
Nonreflecting Zonal Characteristic Boundary Condition for Direct Numerical Simulation of Aerodynamic Sound
,”
AIAA J.
,
44
(
2
), pp.
402
405
.10.2514/1.19169
47.
Freund
,
J.
,
1997
, “
Proposed Inflow/Outflow Boundary Condition for Direct Computation of Aerodynamic Sound
,”
AIAA J.
,
35
(
4
), pp.
740
742
.10.2514/2.167
You do not currently have access to this content.