In this two-part paper the phenomenon of part span rotating stall is studied. The objective is to improve understanding of the physics by which stable and persistent rotating stall occurs within high speed axial flow compressors. This phenomenon is studied both experimentally (Part I) and numerically (Part II). The experimental observations reported in Part I are now explored through the use of 3D unsteady Reynolds-averaged Navier–Stokes (RANS) simulation. The objective is to both validate the computational model and, where possible, explore some physical aspects of the phenomena. Unsteady simulations are presented, performed at a fixed speed with the three rows of variable stator vanes adjusted to deliberately mismatch the front stages and provoke stall. Two families of rotating stall are identified by the model, consistent with experimental observations from Part I. The first family of rotating stall originates from hub corner separations developing on the stage 1 stator vanes. These gradually coalesce into a multicell rotating stall pattern confined to the hub region of the stator and its downstream rotor. The second family originates from regions of blockage associated with tip clearance flow over the stage 1 rotor blade. These also coalesce into a multicell rotating stall pattern of shorter length scale confined to the leading edge tip region. Some features of each of these two patterns are then explored as the variable stator vanes (VSVs) are mismatched further, pushing each region deeper into stall. The numerical predictions show a credible match with the experimental findings of Part I. This suggests that a RANS modeling approach is sufficient to capture some important aspects of part span rotating stall behavior.

References

References
1.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems—Parts I and II
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
231
239
.10.1115/1.3239887
2.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.10.1115/1.2929209
3.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.10.1115/1.2841730
4.
He
,
L.
,
1997
, “
Computational Study of Rotating Stall Inception in Axial Compressor
,”
J. Propul. Power
,
13
(
1
), pp.
31
38
.10.2514/2.5147
5.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Vo
,
H. D.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp.
735
742
.10.1115/1.2836727
6.
Gourdain
,
N.
,
Burguburu
,
S.
,
Leboeuf
,
F.
, and
Miton
,
H.
,
2006
, “
Numerical Simulation of Rotating Stall in a Subsonic Compressor
,”
Aerosp. Sci. Technol.
,
10
(
1
), pp.
9
18
.10.1016/j.ast.2005.07.006
7.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2008
, “
Unsteady Flow and Aeroelasticity Behaviour of Aeroengine Core Compressors During Rotating Stall and Surge
,”
ASME J. Turbomach.
,
130
(
3
), p.
031017
.10.1115/1.2777188
8.
Choi
,
M.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2011
, “
Effects of Fan Speed on Rotating Stall Inception and Recovery
,”
ASME J. Turbomach.
,
133
(
4
), p.
041013
.10.1115/1.4003243
9.
Choi
,
M.
,
Smith
,
N. H. S.
, and
Vahdati
,
M.
,
2013
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
.10.1115/1.4006641
10.
Gourdain
,
N.
,
Burguburu
,
S.
,
Leboeuf
,
F.
, and
Michon
,
G. J.
,
2010
, “
Simulation of Rotating Stall in a Whole Stage of an Axial Compressor
,”
Comput. Fluids
,
39
(
9
), pp.
1644
1655
.10.1016/j.compfluid.2010.05.017
11.
Chen
,
J. P.
,
Hathaway
,
M. D.
, and
Herrick
,
G. P.
,
2008
, “
Prestall Behaviour of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
(
4
), p.
041014
.10.1115/1.2812968
12.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
13.
Pullan
,
G.
,
Young
,
A.
,
Day
,
I.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2012
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME
Paper No. GT2012-68707.10.1115/GT2012-68707
14.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2012
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffusers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011025
.10.1115/1.4006533
15.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
,
2011
, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME J. Turbomach
,
135
(
1
), p.
01133
.10.1115/1.4006426
16.
Spakovszky
,
Z. S.
, and
Roduner
,
C. H.
,
2009
, “
Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
(
3
), p.
031012
.10.1115/1.2988166
17.
Lieblein
,
S.
,
Schwenk
,
F. C.
, and
Broderick
,
R. L.
,
1953
, “
Diffusion Factor for Estimating Losses and Limiting Blade Loadings in Axial Flow Compressor Blade Elements
,” NACA Report No. RM E53D01.
18.
Cumpsty
,
N. A.
,
1989
, “
Compressor Aerodynamics
,”
Longman Scientific and Technical
,
Wiley
,
New York
.
You do not currently have access to this content.