Within previous EU projects, possible modifications to the engine architecture have been investigated, which would allow for an optimized aerodynamic or acoustic design of the exit guide vanes (EGVs) of the turbine exit casing (TEC). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares a state-of-the art TEC (reference TEC) with typical EGVs with an acoustically optimized TEC configuration for the engine operating point approach. It is shown that a reduction in sound power level for the fundamental tone (one blade passing frequency (BPF)) for this acoustically important operating point can be achieved. It is also shown that the weight of the acoustically optimized EGVs (only bladings considered) is almost equal to the reference TEC, but a reduction in engine length can be achieved. Measurements were conducted in the subsonic test turbine facility (STTF) at the Institute for Thermal Turbomachinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes (IGVs), the low pressure turbine (LPT) stage, and the EGVs have been designed by MTU Aero Engines.

References

References
1.
Koch
,
H.
,
Kozulovic
,
D.
, and
Hoeger
,
M.
,
2012
, “
Outlet Guide Vane Airfoil for Low Pressure Turbine Configurations
,”
AIAA
Paper No. 2012-2979.10.2514/6.2012-2979
2.
Schreiber
,
H.-A.
,
Steinert
,
W.
,
Sonoda
,
T.
, and
Arima
,
T.
,
2004
, “
Advanced High-Turning Compressor Airfoils for Low Reynolds Number Condition-Part II: Experimental and Numerical Analysis
,”
ASME J. Turbomach.
,
126
(
4
), pp.
482
492
.10.1115/1.1737781
3.
Sonoda
,
T.
,
Yamaguchi
,
Y.
,
Arima
,
T.
,
Olhofer
,
M.
,
Sendhoff
,
B.
, and
Schreiber
,
H.
,
2004
, “
Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition-Part I: Design and Optimization
,”
ASME J. Turbomach
,
126
(
3
), pp.
350
359
.10.1115/1.1737780
4.
Sonoda
,
T.
, and
Schreiber
,
H.-A.
,
2007
, “
Aerodynamic Characteristics of Supercritical Outlet Guide Vanes at Low Reynolds Number Conditions
,”
ASME J. Turbomach.
,
129
(
4
), pp.
694
704
.10.1115/1.2720868
5.
Hjärne
,
J.
,
2007
, “
Turbine Outlet Guide Vane Flows
,” Ph.D. thesis, Chalmers University of Technology, Gothenburg, Sweden.
6.
Moser
,
M.
,
Kahl
,
G.
,
Kulhanek
,
G.
, and
Heitmeir
,
F.
,
2007
, “
Construction of a Subsonic Test Turbine Facility for Experimental Investigations of Sound Generation and Propagation for Low Pressure Turbines
,”
18th International Symposium on Air Breathing Engines
, Beijing, China, Sept. 2–7, ISABE Paper No. 2007-1366.
7.
Moser
,
M.
,
Tapken
,
U.
,
Enghardt
,
L.
, and
Neuhaus
,
L.
,
2009
, “
An Investigation of Low Pressure Turbine Blade-Vane Interaction Noise: Measurements in a 1.5-Stage Rig
,”
Proc. Inst. Mech. Eng., A.
,
223
(
6
), pp.
687
695
.10.1243/09576509JPE823
8.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
, pp.
309
332
.
9.
Enghardt
,
L.
,
Tapken
,
U.
,
Neise
,
W.
,
Kennepohl
,
F.
, and
Heinig
,
K.
,
2001
, “
Turbine Blade/Vane Interaction Noise: Acoustic Mode Analysis Using In-Duct Sensor Arrays
,” AIAA Paper No. AIAA-2001-2153.
10.
Enghardt
,
L.
,
Tapken
,
U.
,
Koronow
, and
Kennepohl
,
F.
,
2005
, “
Acoustic Mode Decomposition of Compressor Noise Under Consideration of Radial Flow Profiles
,”
AIAA
Paper No. 2005-2833.10.2514/6.2005-2833
11.
Tapken
,
U.
, and
Enghardt
,
L.
,
2006
, “
Optimisation of Sensor Arrays for Radial Mode Analysis in Flow Ducts
,”
AIAA
Paper No. 2006-2638.10.2514/6.2006-2638
12.
Broszat
,
D.
,
Selic
,
T.
, and
Marn
,
A.
,
2012
, “
Verification of the Inverse Cut-Off Effect in a Turbomachinery Stage Part 1-Numerical Results
,”
AIAA
Paper No. 2012-2306.10.2514/6.2012-2306
13.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.10.1115/1.3239704
14.
Marn
,
A.
,
Göttlich
,
E.
,
Cadrecha
,
D.
, and
Pirker
,
H. P.
,
2009
, “
Shorten the Intermediate Turbine Duct Length by Applying an Integrated Concept
,”
ASME J. Turbomach.
,
131
(
4
), p.
041014
.10.1115/1.3070578
You do not currently have access to this content.