Lean-burn swirl stabilized combustors represent the key technology to reduce NOx emissions in modern aircraft engines. The high amount of air admitted through a lean-burn injection system is characterized by very complex flow structures, such as recirculations, vortex breakdown, and processing vortex core, which may deeply interact in the near wall region of the combustor liner. This interaction and its effects on the local cooling performance make the design of the cooling systems very challenging, accounting for the design and commission of new test rigs for detailed analysis. The main purpose of the present work is the characterization of the flow field and the wall heat transfer due to the interaction of a swirling flow coming out from real geometry injectors and a slot cooling system which generates film cooling in the first part of the combustor liner. The experimental setup consists of a nonreactive three sector planar rig in an open loop wind tunnel; the rig, developed within the EU project Low Emissions Core-Engine Technologies (LEMCOTEC), includes three swirlers, whose scaled geometry reproduces the real geometry of an Avio Aero partially evaporated and rapid mixing (PERM) injector technology, and a simple cooling scheme made up of a slot injection, reproducing the exhaust dome cooling mass flow. Test were carried out imposing realistic combustor operating conditions, especially in terms of reduced mass flow rate and pressure drop across the swirlers. The flow field is investigated by means of particle image velocimetry (PIV), while the measurement of the heat transfer coefficient is performed through thermochromic liquid crystals (TLCs) steady state technique. PIV results show the behavior of flow field generated by the injectors, their mutual interaction, and the impact of the swirled main flow on the stability of the slot film cooling. TLC measurements, reported in terms of detailed 2D heat transfer coefficient maps, highlight the impact of the swirled flow and slot film cooling on wall heat transfer.

References

References
1.
Behrendt
,
T.
,
Hassa
,
C.
, and
Gerendas
,
M.
,
2008
, “
Characterization of Advanced Combustor Cooling Concept Under Realistic Operating Conditions
,”
ASME
Paper No. GT2008-51191.10.1115/GT2008-51191
2.
Lilley
,
D.
,
1977
, “
Swirl Flows in Combustion: A Review
,”
AIAA J.
,
15
(
8
), pp.
1063
1078
.10.2514/3.60756
3.
Syred
,
N.
,
O'Doherty
,
T.
, and
Froud
,
D.
,
1994
, “
The Interaction of the Precessing Vortex Core and Reverse Flow Zone in the Exhaust of a Swirl Burner
,”
Proc. Inst. Mech. Eng., A
,
208
(11)
, pp.
27
36
.10.1243/PIME_PROC_1994_208_006_02
4.
Gore
,
R.
, and
Ranz
,
W.
,
1964
, “
Backflow in Rotating Fluids Moving Axially Through Expanding Cross Sections
,”
AIChE J.
,
10
(1)
, pp.
83
88
.10.1002/aic.690100126
5.
Brum
,
R.
, and
Samuelson
,
G.
,
1987
, “
Two-Component Laser Anemometry Measurements of Non-Reacting and Reacting Complex Flows in a Swirl-Stabilized Model Combustor
,”
Exp. Fluids
,
5
(2)
, pp.
95
102
.10.1007/BF00776179
6.
Vu
,
B.
, and
Gouldin
,
F.
,
1982
, “
Flow Measurement in a Model Swirl Combustor
,”
AIAA J.
,
20
(5)
, pp.
642
651
.10.2514/3.51122
7.
Rhode
,
D.
,
Lilley
,
D.
, and
McLaughlin
,
D.
,
1983
, “
Mean Flowfields in Axisymmetric Combustor Geometries With Swirl
,”
AIAA J.
,
21
(4)
, pp.
593
600
.10.2514/3.60127
8.
Ferrell
,
G.
,
Abujelala
,
M.
,
Busnaina
,
A.
, and
Lilley
,
D.
,
1984
, “
Lateral Jet Injection Into Typical Combustor Flowfields
,”
AIAA
Paper No. 84-0374.10.2514/6.1984-374
9.
Spencer
,
A.
,
Hollis
,
D.
, and
Carrotte
,
J.
,
2007
, “
PIV Measurements of Combustor Turbulence Fields
,”
ASME
Paper No. GT2007-28050.10.1115/GT2007-28050
10.
Spencer
,
A.
,
Hollis
,
D.
, and
Gashi
,
S.
,
2008
, “
Investigation of the Unsteady Aerodynamics of an Annular Combustor Using PIV and LES
,”
ASME
Paper No. GT2008-50277.10.1115/GT2008-50277
11.
Kern
,
M.
,
Marinov
,
S.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Peschiulli
,
A.
, and
Turrini
,
F.
,
2011
, “
Characteristics of an Ultra-Lean Swirl Combustor Flow by LES and Comparison to Measurements
,”
ASME
Paper No. GT2011-45300.10.1115/GT2011-45300
12.
Wurm
,
B.
,
Schulz
,
A.
, and
Bauer
,
H.
,
2009
, “
A New Test Facility for Investigating the Interaction Between Swirl Flow and Wall Cooling Films in Combustors
,”
ASME
Paper No. GT2009-59961.10.1115/GT2009-59961
13.
Shisnova
,
E.
,
Roganova
,
P.
,
Grabarnika
,
S.
, and
Zabolotskya
,
V.
,
1988
, “
Heat Transfer in the Recirculating Region Formed by a Backward-Facing Step
,”
Int. J. Heat Mass Transfer
,
31
(8)
, pp.
1557
1562
.10.1016/0017-9310(88)90267-0
14.
Vogel
,
J.
, and
Eaton
,
J.
,
1985
, “
Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward Facing Step
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
922
929
.10.1115/1.3247522
15.
Pozarlik
,
A.
,
Panara
,
D.
,
Kok
,
J.
, and
van der Meer
,
T.
,
2008
, “
Heat Transfer in a Recirculation Zone at Steady-State and Oscillating Conditions—The Back Facing Step Test Case
,”
5th European Thermal-Sciences Conference
,
Eindhoven, Netherlands
, May 18–22.
16.
Memar
,
H.
,
Holman
,
J.
, and
Dellenback
,
P.
,
1993
, “
The Effect of a Swirled Annular Jet on Convective Heat Transfer in Confined Coaxial Jet Mixing
,”
Int. J. Heat Mass Transfer
,
36
(
16
), pp.
3921
3930
.10.1016/0017-9310(93)90142-S
17.
Patil
,
S.
,
Sedalor
,
T.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.
, and
Srinivasan
,
R.
,
2011
, “
Study of Flow and Convective Heat Transfer in a Simulated Scaled Up Low Emission Annular Combustor
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
3
), p.
031010
.10.1115/1.4004531
18.
Patil
,
S.
,
Abraham
,
S.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.
, and
Srinivasan
,
R.
,
2011
, “
Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011028
.10.1115/1.4001173
19.
Marinov
,
S.
,
Kern
,
M.
,
Merkle
,
K.
,
Zarzalis
,
N.
,
Peschiulli
,
A.
, and
Turrini
,
F.
,
2010
, “
On Swirl Stabilized Flame Characteristics Near the Weak Extinction Limit
,”
ASME
Paper No. GT2010-22335.10.1115/GT2010-22335
20.
Andreini
,
A.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Bellocci
,
L.
, and
Turrini
,
F.
,
2014
, “
Assessment of Aero-Thermal Design Methodology for Effusion Cooled Lean Burn Annular Combustors
,”
ASME
Paper No. GT2014-26764.10.1115/GT2014-26764
21.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry—A Practical Guide
,
2nd ed.
,
Springer
, Berlin.
22.
Gnirss
,
M.
, and
Tropea
,
C.
,
2008
, “
Simultaneous PIV and Concentration Measurements in a Gas-Turbine Model
,”
Exp. Fluids
,
45
(4)
, pp.
643
656
.10.1007/s00348-008-0518-0
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
ASME J. Mech. Eng.
,
75
(
1
), pp.
3
8
.
24.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
, London.
25.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
1st ed.
,
Taylor & Francis
, London.
You do not currently have access to this content.