The effects of humid air on the performance of a multistage research compressor and new methods of humidity accounting to ensure appropriate representation of performance parameters are investigated in this paper. Turbomachinery textbooks present methods of correcting speed and mass flow rate using perfect gas assumptions, but these methods can reduce the ability to achieve repeatable compressor performance when using unconditioned air in a climate where absolute humidity may vary. Instead, a new method is introduced, which models humid air as a real gas and circumvents the need for assumptions in the correction process. In the area of compressor research, the ability to measure small changes in performance parameters and ensure repeatable results is essential. Errors of more than 0.5% can result from using perfect gas assumptions to calculate corrected speed, which can lead to misrepresented performance parameters beyond the uncertainty of the measurements. Multiplicative correction factors based on analytical data are also introduced as an alternate method of applying the new real-gas method, and these correction factors are compared to those derived by previous authors applying ideal gas methods for humidity accounting. This is the first time in open literature that experimental results for a component of a gas turbine engine are presented comparing a humid air correction method with traditional correction methods.

References

References
1.
American Society of Mechanical Engineers
,
1997
,
Performance Test Code on Compressors and Exhausters
,
ASME
New York, Standard No. PTC 10-1997, pp.
11
13
, 33–51, 61–62.
2.
Dimmock
,
N. A.
,
1963
, “
A Compressor Routine Test Code
,” Ministry of Aviation, Aeronautical Research Council, London, UK, Reports and Memoranda No. 3337, pp.
6
43
.
3.
NACA Subcommittee on Compressors
,
1950
, “
Standard Procedures for Rating and Testing Multistage Axial-Flow Compressors
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Technical Note No. 1138, p.
8
.
4.
Erwin
,
J. R.
,
1964
, “
Experimental Techniques
,”
Aerodynamics of Turbines and Compressors
,
W. R.
Hawthorne
, ed.,
Princeton University Press
,
Princeton, NJ
, pp.
167
269
.
5.
Samuels
,
J. C.
, and
Gale
,
B. M.
,
1950
, “
Effect of Humidity on Performance of Turbojet Engines
,” National Advisory Committee for Aeronautics, Washington, DC, NACA Technical Note No. 2119.
6.
Bird
,
J.
, and
Grabe
,
W.
,
1991
, “
Humidity Effects on Gas Turbine Performance
,” International Gas Turbine and Aeroengine Congress and Exposition, Orlando, FL, June 3–6,
ASME
Paper No. 91-GT-329.
7.
Fishbeyn
,
B. D.
, and
Pervyshin
,
N. V.
,
1970
, “
Determination of the Effect of Atmospheric Humidity on the Characteristics of a Turbofan Engine
,” Foreign Technology Division,
Wright-Patterson AFB
, OH, Paper No. FTD-HT-23-290-68 (AD 715232).
8.
Propulsion and Energetics Panel Working Group 24
,
1995
, “
Recommended Practices for the Assessment of the Effects of Atmospheric Water Ingestion on the Performance and Operability of Gas Turbine Engines
,”
AGARD
,
Paris, France
, Advisory Report No. 332, pp.
3-1
3-64
.
9.
Mathioudakis
,
K.
, and
Tsalavoutas
,
T.
,
2002
, “
Uncertainty Reduction in Gas Turbine Performance Diagnostics by Accounting for Humidity Effects
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
801
808
.10.1115/1.1470485
10.
Rowe
,
A. L.
, and
Horswill
,
M. A.
,
2005
, “
Gas Turbine Engine Control System
,” U.S. Patent No. 6,837,055.
11.
Fessler
,
T. E.
,
1979
, “
WETAIR—A Computer Code for Calculating Thermodynamic and Transport Properties of Air–Water Mixtures
,” NASA Lewis Research Center, Cleveland, OH, Technical Paper No. 1466.
12.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP
, Version 9.1,
National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg, MD
.
13.
Gernert
,
G. J.
,
2013
, “
A New Helmholtz Energy Model for Humid Gases and CCS Mixtures
,” Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany.
14.
Buckingham
,
E.
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev. Bur. Stand.
,
4
(
4
), pp.
345
376
.10.1103/PhysRev.4.345
15.
Dixon
,
S. L.
,
2005
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Elsevier
,
Burlington, MA
, pp.
16
20
.
16.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger
,
Malabar, FL
, pp.
11
21
.
17.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
, pp.
59
70
.
18.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Blackwell Science
,
Oxford, UK
, pp.
143
158
.
19.
Wright
,
T.
,
1999
,
Fluid Machinery: Performance, Analysis, and Design
,
CRC Press
,
Boca Raton, FL
, pp.
52
56
.
20.
Balje
,
O. E.
,
1981
,
Turbomachines: A Guide to Design, Selection, and Theory
,
Wiley
,
New York
, pp.
34
46
.
21.
Saravunamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
,
Cohen
,
H.
, and
Straznicky
,
P. V.
,
2009
,
Gas Turbine Theory
,
Pearson, Essex
,
UK
, pp.
178
181
.
22.
Wright
,
J. D.
,
2010
, “
Properties for Accurate Gas Flow Measurements
,”
15th Flow Measurement Conference (FLOMEKO)
,
Taipei, Taiwan,
Oct. 13–15.
23.
Wexler
,
A.
,
1976
, “
Vapor Pressure Formulation for Water in Range 0 to 100 °C. A Revision
,”
J. Res. Natl. Bur. Stand.
,
80A
(
5
), pp.
775
785
.10.6028/jres.080A.071
24.
Wexler
,
A.
,
1977
, “
Vapor Pressure Formulation for Ice
,”
J. Res. Natl. Bur. Stand.
,
81A
(
1
), pp.
5
20
.10.6028/jres.081A.003
25.
Flatau
,
P. J.
,
Walko
,
R. L.
, and
Cotton
,
W. R.
,
1992
, “
Polynomial Fits to Saturation Vapor Pressure
,”
J. Appl. Meteorol.
,
31
(
12
), pp.
1507
1513
.10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2
26.
WMO
,
1966
,
International Meteorological Tables
,
S.
Letestu
, ed.,
World Meterological Organization
,
Geneva, Switzerland
, Report No. 188 TP 94, Table 4.3, pp.
3
4
.
27.
American Society of Mechanical Engineers
,
2004
, “
Flow Measurement
,”
ASME
New York, Standard No. PTC 19.5, pp.
19
27
.
28.
Lou
,
F.
,
Fabian
,
J.
, and
Key
,
N. L.
,
2013
, “
Effects of Invoking Different Gas Models on Air Compressor Efficiency Calculation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
012601
.10.1115/1.4025317
29.
Smith
,
N. R.
, and
Key
,
N. L.
,
2013
, “
Vane Clocking Effects on Stator Loss for Different Compressor Loading Conditions
,”
AIAA
Paper No. ISABE-2013-1134. 10.2514/6.ISABE-2013-1134
30.
Graf
,
M. B.
,
Wong
,
T. S.
,
Greitzer
,
E. M.
,
Marble
,
F. E.
,
Tan
,
C. S.
,
Shin
,
H. W.
, and
Wisler
,
D. C.
,
1998
, “
Effects of Nonaxisymmetric Tip Clearance on Axial Compressor Performance and Stability
,”
ASME J. Turbomach.
,
120
(
4
), pp.
648
661
.10.1115/1.2841774
31.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
32.
Wellborn
,
S. R.
, and
Okiishi
,
T. H.
,
1999
The Influence of Shrouded Stator Cavity Flows on Multistage Compressor Performance
,”
ASME J. Turbomach.
,
121
(
3
), pp.
486
497
.10.1115/1.2841341
33.
Hynes
,
T. P.
, and
Greitzer
,
E. M.
,
1987
, “
A Method for Assessing Effects of Circumferential Flow Distortion on Compressor Stability
,”
ASME J. Turbomach.
,
109
(
3
), pp.
371
379
.10.1115/1.3262116
You do not currently have access to this content.