Geometrical variations occur in highly loaded turbine blades due to operation and regeneration. To determine the influence of such regeneration-induced variances of turbine blades on the aerodynamic excitation, a typical stagger angle variation of overhauled turbine blades is applied to stator vanes of an air turbine. This varied turbine stage is numerically and experimentally investigated. For the aerodynamic investigation of the vane wake, computational fluid dynamics (CFD) simulations are conducted. It is shown that the wake is changed due to the stagger angle variation. These results are confirmed by aerodynamic probe measurements in the air turbine. The vibration amplitude of the downstream rotor blades has been determined by a computational forced response analysis using a unidirectional fluid–structure interaction (FSI) approach and is experimentally verified here by tip-timing measurements. The results of the simulations and the measurements both show significantly higher amplitudes at certain operating points (OPs) due to the additional wake excitation. For typical regeneration-induced variations in stagger angle, the vibration amplitude is up to five times higher than in the reference case of uniform upstream stators. Based upon the present results, the influence of these variations and of the vane patterns on the vibration amplitude of the downstream rotor blade can and should be estimated in the regeneration process to minimize the dynamic stresses of the blades.

References

References
1.
Vahdati
,
M.
,
Sayma
,
A.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction. Part II: Case Studies
,”
J. Fluids Struct.
,
14
(1), pp.
103
125
.10.1006/jfls.1999.0254
2.
Bréard
,
C.
,
Green
,
J.
, and
Imregun
,
M.
,
2003
, “
Low-Engine-Order Excitation Mechanisms in Axial-Flow Turbomachinery
,”
J. Propul. Power
,
19
(
4
), pp.
704
712
.10.2514/2.6160
3.
Di Mare
,
L.
,
Imregun
,
M.
,
Smith
,
A.
, and
Elliott
,
R.
,
2007
, “
A Numerical Study of High Pressure Turbine Forced Response in the Presence of Damaged Nozzle Guide Vanes
,”
Aeronaut. J.
,
111
(
1125
), pp.
751
757
.
4.
Meyer
,
M.
,
Parchem
,
R.
, and
Davison
,
P.
,
2011
, “
Prediction of Turbine Rotor Blade Forcing Due to In-Service Stator Vane Trailing Edge Damage
,”
ASME
Paper No. GT2011-45204. 10.1115/GT2011-45204
5.
Petrov
,
E.
,
Di Mare
,
L.
,
Hennings
,
H.
, and
Elliott
,
R.
,
2010
, “
Forced Response of Mistuned Bladed Disks in Gas Flow: A Comparative Study of Predictions and Full-Scale Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
052504
.10.1115/1.3205031
6.
Pohle
,
L.
,
Panning-von Scheidt
,
L.
,
Aschenbruck
,
J.
,
Seume
,
J.
, and
Wallaschek
,
J.
,
2014
, “
Dynamical Behavior of a Mistuned Air Turbine: Comparison Between Simulations and Measurements
,”
ASME Turbo Expo
,
Duesseldorf, Germany
, June 16–20,
ASME
Paper No. GT2014-26025. 10.1115/GT2014-26025
7.
Carstens
,
V.
,
Kemme
,
R.
, and
Schmitt
,
S.
,
2003
, “
Coupled Simulation of Flow-Structure Interaction in Turbomachinery
,”
Aerospace Sci. Technol.
,
7
(
4
), pp.
298
306
.10.1016/S1270-9638(03)00016-6
8.
Hall
,
K.
,
Thomas
,
J.
,
Ekici
,
K.
, and
Voytovyc
,
D.
,
2003
, “
Frequency Domain Techniques for Complex and Nonlinear Flows in Turbomachinery
,”
AIAA
Paper No. 2003-3998.10.2514/6.2003-3998
9.
Chiang
,
H.
, and
Kielb
,
R.
,
1993
, “
An Analysis System for Blade Forced Response
,”
ASME J. Turbomach.
,
115
(4), pp.
762
770
.10.1115/1.2929314
10.
Hennings
,
H.
, and
Elliott
,
R.
,
2002
, “
Forced Response Experiments in a High Pressure Turbine Stage
,”
ASME
Paper No. GT2002-30453.10.1115/GT2002-30453
11.
Schwitzke
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2013
, “
Prediction of High-Frequency Blade Vibration Amplitudes in a Radial Inflow Turbine With Nozzle Guide Vanes
,”
ASME
Paper No. GT2013-94761.10.1115/GT2013-94761
12.
Washborn
,
R.
, and
Kim
,
N.-E.
,
2006
, “
Investigation of Hardware Transmitted Excitation Sources and the Associated Blade Response Using Tip Timing Instrumentation
,”
3rd EVI-GTI International Conference on Gas Turbine Instrumentation
, Rome, Sept. 28–29.
13.
Andersson
,
C.
,
Grasbon
,
P.
, and
Merchant
,
S.
,
2010
, “
Vibrations of the LH2 Turbine Rotor During the Vinci Engine Test Tip Timing Measurements and Predictions
,”
ASME
Paper No. GT2010-23413. 10.1115/GT2010-23413
14.
Heath
,
S.
, and
Imregun
,
M.
,
1998
, “
A Survey of Blade Tip-Timing Measurement Techniques for Turbomachinery Vibration
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
784
791
.10.1115/1.2818468
15.
Aschenbruck
,
J.
,
Meinzer
,
C.
,
Pohle
,
L.
,
Panning-von Scheidt
,
L.
, and
Seume
,
J.
,
2013
, “
Regeneration-Induced Forced Response in Axial Turbines
,”
ASME
Paper No. GT2013-95431. 10.1115/GT2013-95431
16.
Aschenbruck
,
J.
,
Meinzer
,
C.
, and
Seume
,
J.
,
2013
, “
Influence of Regeneration-Induced Variances of Stator Vanes on the Vibration Behavior of Rotor Blades in Axial Turbines
,” 10th European Turbomachinery Conference (ETC), Lappeeranta, Finland, Apr. 15–19, Paper No. A113.
17.
Campobasso
,
M.
, and
Giles
,
M.
,
2000
, “
Analysis of the Effect of Mistuning on Turbomachinery Aeroelasticity
,”
9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines (ISUAAAT 2000)
,
Lyon, France
, Sept. 4–8, pp.
885
896
.
18.
Zhai
,
Y.
,
Bladh
,
R.
, and
Dyverfeldt
,
G.
,
2012
, “
Aeroelastic Stability Assessment of an Industrial Compressor Blade Including Mistuning Effects
,”
ASME J. Turbomach.
,
134
(6), p.
060903
.10.1115/1.4007210
19.
Bammert
,
K.
,
Bohnenkamp
,
W.
, and
Woelk
,
G.-U.
,
1973
, “
Strömungskanäle zum Kalibrieren von Druck-, Temperatur- und Geschwindigkeitssonden
,”
Konstruktion
25
(
7
), pp.
245
254
.
20.
Rieß
,
W.
, and
Braun
,
M.
,
2003
, “
Stationäres und instationäres Verhalten verschiedener Typen von Stroemungs-Messsonden in instationaerer Stroemung
,” DFG Final Report No. Ri 375/13-1, Institute of Turbomachinery and Fluid Dynamics, Leibniz Universität Hannover, Hannover, Germany.
21.
Herbst
,
F.
,
Bluemel
,
S.
,
Fakiolas
,
E.
, and
Seume
,
J.
,
2011
, “
Numerical Investigation of the Interaction Between Probe, Flow and Blading in an Axial-Turbine
,” International Gas Turbine Congress, Osaka, Japan, Nov. 13–18, Paper No. IGTC2011-0194.
22.
Herbst
,
F.
,
Kozulovic
,
D.
, and
Seume
,
J.
,
2013
, “
Transition Modeling for Vortex Generating Jets on Low-Pressure Turbine Profiles
,”
ASME J. Turbomach.
,
135
(1), p.
011038
.10.1115/1.4006421
23.
Rose
,
M.
,
Mansour
,
M.
, and
Schuepbach
,
P.
,
2009
, “
The Thermodynamics of Wake Blade Interaction in Axial Flow Turbines: Combined Experimental and Computational Study
,”
ASME
Paper No. GT2009-59655. 10.1115/GT2009-59655
24.
Jinting
,
W.
,
Dandan
,
L.
,
Feng
,
J.
, and
Zhang
,
C.
,
2013
, “
Accuracy of the Half-Power Bandwidth Method With a Third-Order Correction for Estimating Damping in Multi-DOF Systems
,”
J. Earthquake Eng.
,
12
(
1
), pp.
33
38
.10.1007/s11803-013-0149-1
You do not currently have access to this content.