Adjustable diffuser vanes offer an attractive design option for centrifugal compressors applied in industrial applications. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall is still not satisfying. This two-part paper summarizes results of experimental investigations performed with an industrial-like centrifugal compressor. Particular attention was directed toward the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser, and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed. In Part I it was shown that an one-sided diffuser clearance is able to contribute to an increase in flow range, stall margin, pressure ratio, and efficiency. In order to reveal the relevant flow phenomena, in Part II the results of detailed measurements of the pressure distribution at diffuser exit and particle image velocimetry (PIV) measurements inside the diffuser channel performed at three clearance configurations and three diffuser angles at a fixed radial gap are discussed. It was found that, for defined diffuser configurations, the clearance flow amplifies the diffuser throat vortex capable to reduce the loading of the highly loaded vane pressure side and to support a more homogenous diffuser flow. It turned out that the co-action of the geometry parameter diffuser vane angle and diffuser clearance height is of particular importance. The experimental results are published as an open computational fluid dynamics (CFD) testcase “Radiver 2.”

References

References
1.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller–Diffuser Interaction: Part I—Influence on the Performance
,”
ASME J. Turbomach.
,
125
(
1
), pp.
173
182
.10.1115/1.1516814
2.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller–Diffuser Interaction: Part II—Detailed Flow Analysis
,”
ASME J. Turbomach.
,
125
(
1
), pp.
183
192
.10.1115/1.1516815
3.
Schodl
,
R.
,
1977
, “
Entwicklung des Laser-Zwei-Fokus-Verfahrens für die berührungslose Messung der Strömungsvektoren, insbesondere in Turbomaschinen
,” Doctoral thesis, RWTH Aachen, Aachen, Germany.
4.
Ziegler
,
K. U.
,
2003
, “
Experimentelle Untersuchung der Laufrad-Diffusor-Interaktion in einem Radialverdichter variabler Geometrie
,” Doctoral thesis, RWTH Aachen, Aachen, Germany.
5.
Dudderar
,
T. D.
, and
Simpkins
,
P. G.
,
1977
, “
Laser Speckle Photography in a Fluid Medium
,”
Nature
,
270
, pp.
45
47
.10.1038/270045a0
6.
Barker
,
D. B.
, and
Fourney
,
M. E.
,
1977
, “
Measuring Fluid Velocities With Speckle Patterns
,”
Opt. Lett.
,
1
(4), pp.
135
137
.10.1364/OL.1.000135
7.
Grousson
,
U.
, and
Mallick
,
S.
,
1977
, “
Study of Flow Pattern in a Fluid by Scattered Laser Light
,”
Appl. Opt.
,
16
(9), pp.
2334
2336
.10.1364/AO.16.002334
8.
Meynart
,
R.
,
1983
, “
Instantaneous Velocity Field Measurements in Unsteady Gas Flow by Speckle Velocimetry
,”
Appl. Opt.
,
22
(4), pp.
535
540
.10.1364/AO.22.000535
9.
Meynart
,
R.
,
1983
, “
Speckle Velocimetry Study of Vortex Pairing in a Low Re Unexcited Jet
,”
Phys. Fluids
,
26
(8), pp.
2074
2079
.10.1063/1.864411
10.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
261
304
.10.1146/annurev.fl.23.010191.001401
11.
Lourenco
,
L.
,
Krothapalli
,
A.
, and
Smith
,
C.
,
1989
, “
Particle Image Velocimetry
,”
Advances in Fluid Measurements
(Lecture Notes in Engineering, Vol. 45), Gad-el-Hak, II, ed., Springer-Verlag, Berlin, pp.
127
199
.
12.
Merzkirch
,
W.
,
1990
, “
Laser-Speckle-Velocimetry
,” Lasermethoden in der Strömungsmesstechnik,
B.
Ruck
, ed., AT-Fachverlag, Stuttgart, Germany, pp.
71
97
.
13.
Grant
,
I.
,
1997
, “
Particle Image Velocimetry: A Review
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
211
(1), pp.
55
76
.10.1243/0954406971521665
14.
Hinsch
,
K.
,
1993
, “
Particle Image Velocimetry
,”
Speckle Metrology
,
R. S.
Sirohi
, ed.,
Marcel Dekker
,
New York
, pp.
235
323
.
15.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry, a Practical Guide
,
Springer-Verlag
,
Berlin
.
16.
Westerweel
,
J.
,
1993
, “
Digital Particle Image Velocimetry—Theory and Application
,” Doctoral thesis, Technische Universität Delft, Delft, Netherlands.
17.
Woisetschläger
,
J.
, and
Göttlich
,
E.
,
2008
, “
Recent Applications of Particle Image Velocimetry to Flow Research in Thermal Turbomachinery
,”
Particle Image Velocimetry New Developments and Recent Applications
(Topics in Applied Physics),
A.
Schröder
and
C. M.
Willert
, eds.,
Springer
,
New York
.
18.
Hayami
,
H.
,
Hojo
,
M.
, and
Aramaki
,
S.
,
2002
, “
Flow Measurements in a Transonic Centrifugal Impeller Using a PIV
,”
J. Visualiz.
,
5
(3), pp. 255–261.10.1007/BF03182333
19.
Ibaraki
,
S.
,
Matsuo
,
T.
, and
Yokoyama
,
T.
,
2006
, “
Investigation of Unsteady Flow Field in Vaned Diffuser of a Transonic Centrifugal Compressor
,”
ASME
Paper No. GT2006-90268.10.1115/GT2006-90268
20.
Wernet
,
M. P.
,
1998
, “
Digital PIV Measurements in the Diffuser of a High Speed Centrifugal Compressor
,”
AIAA
Paper No. 98-2777.10.2514/6.1998-2777
21.
Wernet
,
M. P.
,
2000
, “
Development of Digital Particle Image Velocimetry for Use in Turbomachinery
,”
Exp. Fluids
,
28
(2), pp.
97
115
.10.1007/s003480050015
22.
Zachau
,
U.
,
2008
, “
Experimental Investigation on the Diffuser Flow in a Centrifugal Compressor With Pipe Diffuser
,” Doctoral thesis, RWTH Aachen, Aachen, Germany.
23.
Ubben
,
S.
, and
Niehuis
,
R.
,
2014
, “
Experimental Investigation of the Diffuser Vane Clearance Effect in a Centrifugal Compressor Stage With Adjustable Diffuser Geometry: Part I—Compressor Performance Analysis
,”
ASME
Paper No. GT2014-26896.10.1115/GT2014-26896
24.
Kenny
,
D. P.
,
1969
, “
A Novel Low-Cost Diffuser for High-Performance Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
91
(
1
), pp.
37
46
.10.1115/1.3574671
25.
Krain
,
H.
,
1988
, “
Swiling Impeller Flow
,”
ASME J. Turbomach.
,
110
(
1
), pp.
122
128
.10.1115/1.3262157
26.
Ubben
,
S.
,
2013
, “
Experimentelle Untersuchung des Diffusorspalteinflusses in einem Radialverdichter mit variabler Leitradgeometrie
,” Doctoral thesis, RWTH Aachen, Aachen, Germany.
You do not currently have access to this content.