In heavy-duty gas turbines, the microparticles that are not captured by the air filtration system can cause fouling and, consequently, a performance drop of the compressor. This paper presents three-dimensional numerical simulations of the microparticle ingestion (0 μm–2 μm) on an axial compressor rotor carried out by means of a commercial computational fluid dynamic (CFD) code. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. The NASA Rotor 37 is considered as a case study for the numerical investigation. The compressor rotor numerical model and the discrete phase model were previously validated by the authors in the first part of this work. The kinematic characteristics (velocity and angle) of the impact of micrometric and submicrometric particles with the blade surface of an axial transonic compressor are shown. The blade zones affected by particle impact were extensively analyzed and reported in the first part of this work, forming the starting point for the analyses shown in this paper. The kinematic analysis showed a high tendency of particle adhesion on the suction side (SS), especially for the particles with a diameter equal to 0.25 μm. Fluid dynamic phenomena and airfoil shape play a key role regarding particle impact velocity and angle. This work has the goal of combining, for the first time, the kinematic characteristics of particle impact on the blade with fouling phenomenon by the use of a quantity called sticking probability (SP) adopted from literature. From these analyses, some guidelines for a proper management of the power plant (in terms of filtration and washing strategies) are highlighted.

References

References
1.
camfil FARR
,
2013
, “
Offshore-Filtration and Acoustic Package
,” Solar Turbine Inc., San Diego CA, confidential report.
2.
Kurz
,
R.
,
Brun
,
K.
,
Meher-Homji
,
C.
, and
Moore
,
J.
,
2012
, “
Gas Turbine Performance and Maintenance
,”
41st Turbomachinery Symposium
,
Houston, TX
, Sept. 24–27.
3.
Jin
,
H.
,
He
,
C.
,
Lu
,
L.
, and
Fan
,
J.
,
2013
, “
Numerical Investigation of the Wall Effect on Airborne Particle Dispersion in a Test Chamber
,”
Aerosol Air Qual. Res.
,
13
, pp.
786
794
.10.4209/aaqr.2012.04.0106
4.
Wilcox
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2011
, “
Successful Selection and Operation of Gas Turbine Inlet Filtration Systems
,”
40th Turbomachinery Symposium
,
Houston, TX
, Sept. 12–15, pp.
254
268
.
5.
Heim
,
L. O.
,
Blum
,
J.
,
Preuss
,
M.
, and
Butt
,
H. J.
,
1999
, “
Adhesion and Friction Forces Between Spherical Micrometer-Sized Particles
,”
Phys. Rev. Lett.
,
83
(
16
), pp.
3328
3331
.10.1103/PhysRevLett.83.3328
6.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2014
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part I: Particle Zones Impact
,”
ASME J. Turbomach.
137
(
2
), p.
021009
.10.1115/1.4028295
7.
Hertz
,
H.
,
1882
, “
Miscellaneous Papers
,” Macmillan and Co., Ltd., London, (authorised English translation), pp.
146
183
.
8.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
(
1558
), pp.
301
313
.10.1098/rspa.1971.0141
9.
Thornton
,
C.
, and
Ning
,
Z.
,
1998
, “
A Theoretical Model for the Stick/Bounce Behavior of Adhesive Elastic-Plastic Spheres
,”
Powder Technol.
,
99
(2)
, pp.
154
162
.10.1016/S0032-5910(98)00099-0
10.
Wall
,
S.
,
John
,
W.
,
Wang
,
H. C.
, and
Goren
,
S. L.
,
1990
, “
Measurements of Kinetic Energy Loss for Particles Impacting Surfaces
,”
Aerosol Sci. Technol.
,
12
(
4
), pp.
926
946
.10.1080/02786829008959404
11.
Poppe
,
T.
,
Blum
,
J.
, and
Henning
,
T.
,
2000
, “
Analogous Experiments on the Stickiness of Micron-Sized Preplanetary Dust
,”
Astrophys. J.
,
533
(1)
, pp.
454
471
.10.1086/308626
12.
Poppe
,
T.
, and
Blum
,
J.
,
1997
, “
Experimental on Pre-Planetary Grain Growth
,”
Adv. Space Res.
,
20
(
8
), pp.
1595
1604
.10.1016/S0273-1177(97)00817-X
13.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
14.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(3)
, pp.
445
452
.10.1115/1.1860376
15.
Suzuki
,
M.
,
Inaba
,
K.
, and
Yamamoto
,
M.
,
2008
, “
Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor
,”
J. Therm. Sci.
,
17
(
2
), pp.
125
133
.10.1007/s11630-008-0125-7
16.
Ghenaiet
,
A.
,
2012
, “
Study of Sand Particle Trajectories and Erosion Into the First Compression Stage of a Turbofan
,”
ASME J. Turbomach.
,
134
(5)
, p.
051025
.10.1115/1.4004750
17.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Design and Overall Performance of Four Highly-Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,” NASA TP 1337.
18.
ANSYS, 2012, Ansys Fluent
User Manual, ANSYS, Inc., Canonsburg, PA.
19.
Ahlert
,
K.
,
1994
, “
Effects of Particle Impingement Angle and Surface Wetting on Solid Particle Erosion of AISI 1018 Steel
,” M.S. thesis, Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK.
20.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
A Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(2)
, pp.
184
193
.10.1016/S0043-1648(97)00217-2
21.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanism in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(3)
, p.
032401
.10.1115/1.4004403
22.
Mangwandia
,
C.
,
Cheonga
,
Y. S.
,
Adamsb
,
M. J.
,
Hounslowa
,
M. J.
, and
Salmana
,
A. D.
,
2007
, “
The Coefficient of Restitution of Different Representative Types of Granules
,”
Chem. Eng. Sci.
,
62
(1–2)
, pp.
437
450
.10.1016/j.ces.2006.08.063
23.
Adi
,
S.
,
Adi
,
H.
,
Chan
,
H.-K.
,
Tong
,
Z.
,
Yang
,
R.
, and
Yu
,
A.
,
2013
, “
Effects of Mechanical Impaction on Aerosol Performance of Particles With Different Surface Roughness
,”
Powder Technol.
,
236
, pp.
164
170
.10.1016/j.powtec.2012.02.051
24.
Silingardi
,
A.
,
Astrua
,
P.
,
Piola
,
S.
, and
Ventrucci
,
I.
,
2013
, “
A Method for a Reliable Prediction of Heavy Duty Gas Turbines Performance Degradation Due to Compressor Aging Employing Field Test Data
,” Power Gen Europe, Messe, Wien, Austria, June 4–6.
25.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.10.1115/1.4002350
You do not currently have access to this content.