The development of integrally cast turbine airfoils allows the production of narrow impingement channels in a double-wall configuration, where the coolant is practically injected within the wall of the airfoil providing increased heat transfer capabilities. This study examines the cooling performance of narrow impingement channels with varying jet diameters using a single exit design in an attempt to regulate the generated crossflow. The channel consists of a single row of five inline jets tested at two different channel heights and over a range of engine representative Reynolds numbers. Detailed heat transfer coefficient distributions are evaluated over the complete interior surfaces of the channel using the transient liquid crystal technique. Additionally, local jet discharge coefficients are determined by probe traversing measurements for each individual jet. A 10%-increasing and a 10%-decreasing jet diameter pattern are compared with a baseline geometry of uniform jet size distribution, indicating a considerable effect of varying jet diameter on the heat transfer level and the development of the generated crossflow.

References

References
1.
Lutum
,
E.
,
Semmler
,
K.
, and
von Wolfersdorf
,
J.
,
2002
, “
Cooled Blade for a Gas Turbine
,” U.S. Patent No. 6,379,118 B2.
2.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
,
120
(
1
), pp.
92
99
.10.1115/1.2841394
3.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C.-P.
, and
Stevens
,
C. W.
,
2004
, “
In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils
,”
ASME
Paper No. GT2004-54260.10.1115/GT2004-54260
4.
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2010
, “
Turbine Airfoil Aerothermal Characteristics in Future Coal–Gas-Based Power Generation Systems
,”
Heat Transfer Res.
,
41
(
7
), pp.
737
752
.10.1615/HeatTransRes.v41.i7.40
5.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
6.
Terzis
,
A.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Cochet
,
M.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Cast-In Turbine Airfoils
,”
ASME J. Turbomach.
,
136
(
9
), p.
091011
.10.1115/1.4027679
7.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
8.
Obot
,
N. T.
, and
Trabold
,
T. A.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
872
879
.10.1115/1.3248197
9.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2005
, “
The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
358
365
.10.1115/1.1800493
10.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Kingston
,
R.
,
2010
, “
Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021001
.10.1115/1.3140282
11.
Terzis
,
A.
,
Wagner
,
G.
,
von Wolfersdorf
,
J.
,
Ott
,
P.
, and
Weigand
,
B.
,
2014
, “
Effect of Hole Staggering on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071701
.10.1115/1.4027250
12.
Uysal
,
U.
,
Li
,
P. W.
,
Chyu
,
M. K.
, and
Cunha
,
F. J.
,
2006
, “
Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array With Varying Jet Hole-Size and Spacing
,”
ASME J. Turbomach.
,
128
(
1
), pp.
158
165
.10.1115/1.2101859
13.
Miller
,
N.
,
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “
Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets
,”
ASME
Paper No. GT2013-95400.10.1115/GT2013-95400
14.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
,
129
(
2
), pp.
269
280
.10.1115/1.2437774
15.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
,
2007
, “
Advanced Evaluation of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng.
, A,
221
(
6
), pp.
793
801
.10.1243/13506501JET300
16.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Michael Owen
,
J.
,
2005
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
256
263
.10.1016/j.ijheatfluidflow.2004.08.011
17.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
Meas. Sci. Technol.
,
23
(
11
), p.
115303
.10.1088/0957-0233/23/11/115303
18.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.10.1016/S0142-727X(01)00125-4
19.
Lee
,
J.
, and
Lee
,
S.-J.
,
2000
, “
The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
(
18
), pp.
3497
3509
.10.1016/S0017-9310(99)00349-X
20.
Hüning
,
M.
,
2010
, “
Comparison of Discharge Coefficient Measurements and Correlations for Orifices With Cross-Flow and Rotation
,”
ASME J. Turbomach.
,
132
(
3
), p.
031017
.10.1115/1.3147102
21.
Florschuetz
,
L. W.
, and
Isoda
,
Y.
,
1983
, “
Flow Distributions and Discharge Coefficient Effects for Jet Array Impingement With Initial Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
105
(
2
), pp.
296
304
10.1115/1.3227415.
22.
Lichtarowicz
,
A.
,
Duggins
,
R. K.
, and
Markland
,
E.
,
1963
, “
Discharge Coefficients for Incompressible Noncavitating Flow Through Long Orifices
,”
J. Mech. Eng. Sci.
,
7
(
2
), pp.
210
219
.10.1243/JMES_JOUR_1965_007_029_02
23.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Heat Transfer Enhancement on a Flat Surface With Axisymmetric Detached Ribs by Normal Impingement of Circular Air Jet
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1279
1294
.10.1016/j.ijheatfluidflow.2008.05.003
24.
Lee
,
D. H.
,
Song
,
J.
, and
Chan
,
J. M.
,
2004
, “
The Effects of Nozzle Diameter on Impinging Jet Heat Transfer and Fluid Flow
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
554
557
.10.1115/1.1777583
25.
Son
,
C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2001
, “
Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System
,”
ASME J. Turbomach.
,
123
(
1
), pp.
154
160
.10.1115/1.1328087
26.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1377
1382
.10.1016/0017-9310(82)90131-4
27.
Bouchez
,
J. P.
, and
Goldstein
,
R. J.
,
1975
, “
Impingement Cooling From a Circular Jet in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
18
(
6
), pp.
719
730
.10.1016/0017-9310(75)90201-X
28.
Caggese
,
O.
,
Gnaegi
,
G.
,
Hannema
,
G.
,
Terzis
,
A.
, and
Ott
,
P.
,
2013
, “
Experimental and Numerical Investigation of a Fully Confined Impingement Round Jet
,”
Int. J. Heat Mass Transfer
,
65
, pp.
873
882
.10.1016/j.ijheatmasstransfer.2013.06.043
29.
Kataoka
,
K.
,
1985
, “
Optimal Nozzle-to-Plate Spacing for Convective Heat Transfer in Nonisothermal, Variable-Density Impinging Jets
,”
Drying Technol.
,
3
(
2
), pp.
235
254
.10.1080/07373938508916268
30.
Fechter
,
S.
,
Terzis
,
A.
,
Ott
,
P.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Cochet
,
M.
,
2013
, “
Experimental and Numerical Investigation of Narrow Impingement Cooling Channels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1208
1219
.10.1016/j.ijheatmasstransfer.2013.09.003
You do not currently have access to this content.