In the current industrial research on centrifugal compressors, manufacturers are showing increasing interest in the extension of the minimum stable flow limit in order to improve the operability of each unit. The aerodynamic performance of a compressor stage is indeed often limited before surge by the occurrence of diffuser rotating stall. This phenomenon generally causes an increase of the radial vibrations, which, however, is not always connected with a remarkable performance detriment. In case the operating curve has been limited by a mechanical criterion, i.e., based on the onset of induced vibrations, an investigation on the evolution of the aerodynamic phenomenon when the flow rate is further reduced can provide some useful information. In particular, the identification of the real thermodynamic limit of the system could allow one to verify if the new load condition could be tolerated by the rotordynamic system in terms of radial vibrations. Within this context, recent works showed that the aerodynamic loads due to a vaneless diffuser rotating stall can be estimated by means of test-rig experimental data of the most critical stage. Moreover, by including these data into a rotordynamic model of the whole machine, the expected vibration levels in real operating conditions can be satisfactorily predicted. To this purpose, a wide-range analysis was carried out on a large industrial database of impellers operating in presence of diffuser rotating stall; the analysis highlighted specific ranges for the resultant rotating force in terms of intensity and excitation frequency. Moving from these results, rotordynamic analyses have been performed on a specific case study to assess the final impact of these aerodynamic excitations.

References

References
1.
Evans
,
B. F.
, and
Smalley
,
A. J.
,
1984
, “
Subsynchronous Vibrations in a High Pressure Centrifugal Compressor: A Case History
,” Rotordynamic Instability Problems in High-Performance Turbomachinery Workshop, Texas A&M University, College Station, TX, May 28–30.
2.
Bently
,
R.
, and
Goldman
,
P.
,
2000
, “
Vibrational Diagnostics of Rotating Stall in Centrifugal Compressors
,” Orbit Magazine, First Quarter 2000, pp. 32–40, available at: http://www.ge-mcs.com/download/orbit-archives/1996-2000/1st_quarter_2000/400don4.pdf
3.
Frigne
,
P.
, and
van den Braembussche
,
R.
,
1982
, “
Comparative Study of Subsynchronous Rotating Flow Patterns in Centrifugal Compressors With Vaneless Diffusers
,” 2nd Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University, May 10–12, NASA Conf. Pub. 2250, pp.
365
382
.
4.
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2004
, “
Rotating Stall in Centrifugal Compressor Vaneless Diffuser: Experimental Analysis of Geometrical Parameters Influence on Phenomenon Evolution
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
433
442
.10.1155/S1023621X04000430
5.
Jansen
,
W.
,
1964
, “
Rotating Stall in a Radial Vaneless Diffuser
,”
ASME J. Basic Eng.
,
86
(
4
), pp.
750
758
.10.1115/1.3655945
6.
Abdelhamid
,
A. N.
,
1983
, “
Effects of Vaneless Diffuser Geometry on Flow Instability in Centrifugal Compression Systems
,”
Can. Aeronaut. Space J.
,
29
(
3
), pp.
259
288
.
7.
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
,
De Lucia
,
M.
, and
Baldassarre
,
L.
,
2002
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor: Part I—Influence of Diffuser Geometry on Stall Inception
,”
ASME
Paper No. GT2002-30389.10.1115/GT2002-30389
8.
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
,
De Lucia
,
M.
, and
Baldassarre
,
L.
,
2002
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor: Part II—Influence of Diffuser Geometry on Stage Performance
,”
ASME
Paper No. GT2002-30390.10.1115/GT2002-30390
9.
Cellai
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
, and
Baldassarre
,
L.
,
2003
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor: Part III—Influence of Diffuser Geometry on Stall Inception and Performance (2nd Impeller Tested)
,”
ASME
Paper No. GT2003-38390.10.1115/GT2003-38390
10.
Cellai
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
, and
Baldassarre
,
L.
,
2003
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor: Part IV—Impeller Influence on Diffuser Stability
,”
ASME
Paper No. GT2003-38394.10.1115/GT2003-38394
11.
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2006
, “
Experimental Characterization of Vaneless Diffuser Rotating Stall: Part V—Influence of Diffuser Geometry on Stall Inception and Performance (3rd Impeller Tested)
,”
ASME
Paper No. GT2006-90693.10.1115/GT2006-90693
12.
Carnevale
,
E. A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2006
, “
Experimental Characterization of Vaneless Diffuser Rotating Stall: Part VI—Reduction of Three Impeller Results
,”
ASME
Paper No. GT2006-90694.10.1115/GT2006-90694
13.
Kobayashi
,
H.
,
Nishida
,
H.
,
Takagi
,
T.
, and
Fukoshima
,
Y.
,
1990
, “
A Study on the Rotating Stall of Centrifugal Compressors (2nd Report, Effect of Vaneless Diffuser Inlet Shape on Rotating Stall)
,”
Trans. Jpn. Soc. Mech. Eng.
,
56
(
529
), pp.
98
103
.
14.
Nishida
,
H.
,
Kobayashi
,
H.
,
Takagi
,
T.
, and
Fukoshima
,
Y.
,
1988
, “
A Study on the Rotating Stall of Centrifugal Compressors (1st Report, Effect of Vaneless Diffuser Width on Rotating Stall)
,”
Trans. Jpn. Soc. Mech. Eng.
,
54
(
499
), pp.
589
594
.10.1299/kikaib.54.589
15.
Bently
,
R.
,
Goldman
,
P.
, and
Yuan
,
J.
,
2001
, “
Rotor Dynamics of Centrifugal Compressors in Rotating Stall
,” Orbit Magazine, 2Q01, pp. 40–50, available at: http://www.ge-mcs.com/download/orbit-archives/2001-2005/2nd_quarter_2001/2Q01bently2.pdf
16.
Kita
,
M.
,
Iwamoto
,
S.
,
Kiuchi
,
I.
, and
Kawashita
,
R.
,
2008
, “
Prediction of Subsynchronous Rotor Vibration Amplitude Caused by Rotating Stall
,”
37th Turbomachinery Symposium
, Houston, TX, Sept. 8–11, pp.
57
66
.
17.
Marshall
,
D. F.
, and
Sorokes
,
J. M.
,
2000
, “
A Review of Aerodynamically Induced Forces Acting on Centrifugal Compressors, and Resulting Vibration Characteristics of Rotors
,”
29th Turbomachinery Symposium
, Houston, TX, Sept. 18–21, pp.
43
57
.
18.
Colding-Jørgensen
,
J.
,
1980
, “
Effect of Fluid Forces on Rotor Stability of Centrifugal Compressors and Pumps
,” First Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery, Texas A&M University, College Station, TX, May 12–14, NASA Conf. Pub. 2133, pp.
249
266
.
19.
Bianchini
,
A.
,
Biliotti
,
D.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
, and
Vannini
,
G.
,
2013
, “
A Systematic Approach to Estimate the Impact of the Aerodynamic Force Induced by Rotating Stall in a Vaneless Diffuser on the Rotordynamic Behavior of Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), pp.
1
9
.10.1115/1.4025065
20.
Toni
,
L.
,
Ballarini
,
V.
,
Cioncolini
,
S.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2010
, “
Unsteady Flow Field Measurements in an Industrial Centrifugal Compressor
,”
Proceedings of the 39th Turbomachinery Symposium
, Oct. 4–7, Houston, TX, pp.
49
58
.
21.
Bianchini
,
A.
,
Biliotti
,
D.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Belardini
,
E.
,
Giachi
,
M.
, and
Tapinassi
,
L.
,
2014
, “
Some Guidelines for the Experimental Characterization of Vaneless Diffuser Rotating Stall in Stages of Industrial Centrifugal Compressors
,”
ASME Turbo Expo 2014
, Düsseldorf, Germany, June 16–20.
22.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Krieger Publishing
,
Malabar, FL
.
23.
Japiske
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI Publishing
,
White River Junction, VT
.
24.
Porat
,
B.
,
2008
,
Digital Processing of Random Signals: Theory and Methods
,
Dover Publications
,
London
.
25.
API,
2002
, “
Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Service Industry
,”
7th ed.
, American Petroleum Institute, Washington, DC, API Standard 617.
26.
Turbomachinery Research Consortium,
2002
, “
XLTRC2 Rotordynamics Software Suite (2002)
,” Turbomachinery Laboratory, Texas A&M University, College Station, TX.
27.
Branagan
,
L.
, and
Barrett
,
L.
,
1988
, “
Annex 4—Tilting Pad Dynamic Coefficient Reduction With Pivot Flexibility
,” UVA Report No. UVA/643092/MAE88/376.
28.
Thorat
,
M.
, and
Childs
,
D. W.
,
2009
, “
Predicted Rotordynamic Behavior of a Labyrinth Seal as Rotor Surface Velocity Approaches Mach 1
,”
ASME
Paper No. GT2009-59590.10.1115/GT2009-59590
29.
Kleynhans
,
G.
, and
Childs
,
D. W.
,
1997
, “
The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
949
957
.10.1115/1.2817079
30.
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Yokoyama
,
D.
,
Ohashi
,
H.
, and
Kano
,
F.
, “
Rotordynamic Fluid Force Moments on an Open-Type Centrifugal Compressor Impeller in Precessing Motion
,”
Int. J. Rotating Mach.
,
7
(
4
), pp.
237
251
.10.1155/S1023621X01000215
You do not currently have access to this content.