Multiple high-fidelity time-accurate computational fluid dynamics simulations were performed to investigate the effects of upstream stator loading and rotor shock strength on vortex shedding characteristics in a single-stage transonic compressor. Three loadings on the upstream stator row of decreased, nominal, and increased loading in conjunction with three axial spacings of close, mid, and far were studied for this analysis. The time-accurate urans code turbo was used to generate periodic, quarter annulus simulations of the blade row interaction (BRI) compressor rig. It was observed that vortex shedding was synchronized to the passing of a rotor bow shock. Results show that vortex strength increases linearly with stator loading and rotor bow shock strength. “Normal” and “large” shock-induced vortices formed on the stator trailing edge (TE) immediately after the shock passing, but the large vortices were strengthened at the TE due to a low-velocity region on the suction surface. This low-velocity region was generated upstream on the suction surface from a shock-induced thickening of the boundary layer or separation bubble. The circulation of the large vortices was greater than the normal vortices by a factor of 1.7, 1.83, and 2.04 for decreased, nominal, and increased deswirler loadings. At decreased loading, only 24% of the measured vortices were considered large, while at nominal loading 58% were large. A model was developed to predict shock-induced vortex circulation from a known rotor bow shock strength, stator diffusion factor, and near-wake parameters. The model predicts the average vortex circulation very well, with 5% difference between predicted and measured values. An understanding of the unsteady interactions associated with blade loading and rotor shock strength in transonic stages will help compressor designers account for unsteady flow physics at design and off-design operating conditions.

References

References
1.
Adamczyk
,
J. J.
,
2000
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
2.
Hathaway
,
M. D.
,
Gertz
,
J. B.
,
Epstein
,
A. H.
, and
Strazisar
,
A. J.
,
1986
, “
Rotor Wake Characteristics of a Transonic Axial-Flow Fan
,”
AIAA J.
,
24
(
11
), pp.
1802
1810
.
3.
Kotidis
,
P. A.
, and
Epstein
,
A. H.
,
1991
, “
Unsteady Radial Transport in a Transonic Compressor Stage
,”
ASME J. Turbomach.
,
113
(
2
), pp.
207
218
.
4.
Van de Wall
,
A. G.
,
Kadambi
,
J. R.
,
Boyle
,
R. J.
, and
Adamczyk
,
J. J.
,
1996
, “
The Transport of Vortices Through a Turbine Cascade
,”
ASME J. Turbomach.
,
118
(
4
), pp.
654
662
.
5.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
668
690
.
6.
Mikolajczak
,
A. A.
,
1977
, “
The Practical Importance of Unsteady Flow
,” Unsteady Phenomena in Turbomachinery, Paper No. AGARD CP-144.
7.
Smith
,
L. H.
,
1993
, “
Wake Ingestion Propulsion Benefit
,”
AIAA J. Propul. Power
,
9
(
1
), pp.
74
82
.
8.
Deregal
,
P.
, and
Tan
,
C. S.
,
1996
, “
Impact of Rotor Wakes on Steady-State Axial Compressor Performance
,”
ASME
Paper No. 96-GT-253.
9.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
2002
, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
(
2
), pp.
275
284
.
10.
Gorrell
,
S. E.
,
Copenhaver
,
W. W.
, and
Chriss
,
R. M.
,
2001
, “
Upstream Wake Influences on the Measured Performance of a Transonic Compressor Stage
,”
AIAA J. Propul. Power
,
17
(
1
), pp.
43
48
.
11.
Gorrell
,
S. E.
,
Okiishi
,
T. H.
, and
Copenhaver
,
W. W.
,
2003
, “
Stator-Rotor Interactions in a Transonic Compressor, Part 1: Effect of Blade-Row Spacing on Performance
,”
ASME J. Turbomach.
,
125
(
2
), pp.
328
335
.
12.
Gorrell
,
S. E.
,
Okiishi
,
T. H.
, and
Copenhaver
,
W. W.
,
2003
, “
Stator-Rotor Interactions in a Transonic Compressor, Part 2: Description of a Loss Producing Mechanism
,”
ASME J. Turbomach.
,
125
(
2
), pp.
336
345
.
13.
Gorrell
,
S. E.
,
Car
,
D.
,
Puterbaugh
,
S. L.
,
Estevadeordal
,
J.
, and
Okiishi
,
T. H.
,
2006
, “
An Investigation of Wake-Shock Interactions With Digital Particle Image Velocimetry and Time-Accurate Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
128
(
4
), pp.
616
626
.
14.
Langford
,
M. D.
,
Breeze-Stringfellow
,
A.
,
Guillot
,
S. A.
,
Solomon
,
W.
,
Ng
,
W.
, and
Estevadeordal
,
J.
,
2007
, “
Experimental Investigation of the Effects of a Moving Shock Wave on Compressor Stator Flow
,”
ASME J. Turbomach.
,
129
(
1
), pp.
127
135
.
15.
Ottavy
,
X.
,
Trebinjac
,
I.
, and
Voullarmet
,
A.
,
2001
, “
Analysis of the Interrow Flow Field Within a Transonic Axial Compressor—Part 1: Experimental Investigation
,”
ASME J. Turbomach.
,
123
(
1
), pp.
49
56
.
16.
Sanders
,
A.
, and
Fleeter
,
S.
,
2000
, “
Experimental Investigation of Rotor-Inlet Guide Vane Interactions in Transonic Axial-Flow Compressor
,”
AIAA J. Propul. Power
,
16
(
3
), pp.
421
430
.
17.
Reynolds
,
S. B.
,
Gorrell
,
S. E.
, and
Estevadeordal
,
J.
,
2012
, “
PIV Analysis on the Effect of Stator Loading on Transonic Blade-Row Interactions
,”
ASME J. Turbomach.
,
134
(
6
), p.
061012
.
18.
List
,
M. G.
,
Gorrell
,
S. E.
,
Turner
,
M. G.
, and
Nimersheim
,
J. A.
,
2007
, “
High-Fidelity Modeling of Blade Row Interaction in a Transonic Compressor
,”
AIAA
Paper No. 2007-5045.
19.
List
,
M. G.
,
Gorrell
,
S. E.
, and
Turner
,
M. G.
,
2010
, “
Investigation of Loss Generation in an Embedded Transonic Fan Stage at Several Gaps Using High-fidelity, Time-Accurate Computational Fluid Dynamics
,”
ASME Journal of Turbomach.
,
132
(
1
), p.
011014
.
20.
List
,
M. G.
,
2007
, “
Quarter Annulus Simulations of Blade Row Interactions at Several Gaps and Discussion of Flow Physics
,” Master's thesis, University of Cincinnati, Cincinnati, OH.
21.
Nolan
,
S. P. R.
,
Botros
,
B. B.
,
Tan
,
C. S.
,
Adamczyk
,
J. J.
,
Greitzer
,
E. M.
, and
Gorrell
,
S. E.
,
2011
, “
Effects of Upstream Wake Phasing on Transonic Axial Compressor Performance
,”
ASME J. Turbomach.
,
133
(
2
), p.
021010
.
22.
Chen
,
J. P.
, and
Briley
,
W. R.
,
2001
, “
A Parallel Flow Solver for Unsteady Multiple Blade Row Turbomachinery Simulations
,”
ASME
Paper No. 2001-GT-348.
23.
Zhu
,
J.
, and
Shih
,
T. H.
,
2000
, “
CMOTT Turbulence Module for NPARC
,” Contract Report No. NASA CR 204143, NASA Glenn Research Center, Lewis Field, OH.
24.
Van Zante
,
D.
,
Chen
,
J.
,
Hathaway
,
D.
, and
Chriss
,
R.
,
2008
, “
The Influence of Compressor Blade Row Interaction Modeling on Performance Estimates From Time-Accurate, Multistage, Navier-Stokes Simulations
,”
ASME J. Turbomach.
,
130
(
1
), p.
011009
.
25.
Chen
,
J. P.
,
Hathaway
,
M. D.
, and
Herrick
,
G. P.
,
2008
, “
Prestall Behavior of a Transonic Axial Compressor Stage Via Time-Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
(
4
), p.
041014
.
26.
Chen
,
J. P.
,
Webster
,
R. S.
,
Hathaway
,
M. D.
,
Herrick
,
G. P.
, and
Skoch
,
G. J.
,
2006
, “
Numerical Simulation of Stall and Stall Control in Axial and Radial Compressors
,”
AIAA
Paper No. 2006-418.
27.
Gorrell
,
S. E.
,
Yao
,
J.
, and
Wadia
,
A. R.
,
2008
, “
High Fidelity URANS Analysis of Swirl Generation and Fan Response to Inlet Distortion
,”
AIAA
Paper No. 2008-4985.
28.
Yao
,
J.
,
Gorrell
,
S. E.
, and
Wadia
,
A. R.
,
2008
, “
High-Fidelity Numerical Analysis of Per-Rev-Type Inlet Distortion Transfer in Multistage Fans—Part II: Entire Component Simulation and Investigation
,”
ASME
Paper No. GT2008-50813.
29.
Turner
,
M. G.
,
Gorrell
,
S. E.
, and
Car
,
D.
,
2011
, “
Radial Migration of Shed Vortices in a Transonic Rotor Following a Wake Generator: A Comparison Between Time Accurate and Average Passage Approach
,”
ASME J. Turbomach.
,
133
(
3
), p.
031018
.
30.
Shyam
,
V.
,
Ameri
,
A.
,
Luk
,
D. F.
, and
Chen
,
J. P.
,
2011
, “
3D Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer
,”
ASME J. Turbomach.
,
133
(
3
), p.
031015
.
31.
Southworth
,
S. A.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Chen
,
J. P.
,
Heitland
,
G.
, and
Liu
,
J.
,
2009
, “
Time-Accurate Predictions for a Fully Cooled High-Pressure Turbine Stage—Part I: Comparison of Predictions With Data
,”
ASME J. Turbomach.
,
131
(
3
), p.
031003
.
32.
Kamp
,
M. A.
,
Nimersheim
,
J.
,
Beach
,
T.
, and
Turner
,
M. G.
,
2007
, “
A Turbomachinery Gridding System
,”
AIAA
Paper No. 2007-18.
33.
van de Wall
,
A.
,
Breeze-Stringfellow
,
A.
, and
Dailey
,
L.
,
2006
, “
Computational Investigation of Unsteady Flow Mechanisms in Compressors With Embedded Supersonic Rotors
,”
ASME
Paper No. GT2006-90633.
34.
Van Zante
,
D. E.
,
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Okiishi
,
T. H.
,
2000
, “
Recommendations for Achieving Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors
,”
ASME J. Turbomach.
,
122
(
4
), pp.
733
742
.
35.
Clark
,
K. P.
,
2011
, “
Numerical Analysis on the Effects of Blade Loading on Vortex Shedding and Boundary Layer Behavior in a Transonic Axial Compressor
,” Master's thesis, Brigham Young University, Provo, UT.
36.
Estevadeordal
,
J.
,
Gorrell
,
S.
,
Gebbie
,
D.
, and
Puterbaugh
,
S.
,
2007
, “
PIV Study of Blade-Row Interactions in a Transonic Compressor
,”
AIAA
Paper No. 2007-5017.
37.
Estevadeordal
,
J.
,
Gorrell
,
S.
, and
Puterbaugh
,
S.
,
2008
, “
PIV Measurements of Blade-Row Interactions in a Transonic Compressor for Various Operating Conditions
,”
AIAA
Paper No. 2008-4700.
38.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada, CA
.
39.
Clark
,
K. P.
, and
Gorrell
,
S. E.
,
2011
, “
Time-Accurate CFD Analysis on the Effects of Upstream Stator Loading and Blade Row Interactions on Stator Suction Side Boundary Layer Behavior
,”
AIAA
Paper No. 2011-303.
40.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry
,
Springer
,
Berlin
.
41.
Epstein
,
A. H.
,
Gertz
,
J. B.
,
Owen
,
P. R.
, and
Giles
,
M. B.
,
1988
, “
Vortex Shedding in High-Speed Compressor Blade Wakes
,”
AIAA J. Propul. Power
,
4
(
3
), pp.
236
244
.
42.
Turner
,
M. G.
,
Norris
,
A.
, and
Veres
,
J.
,
2003
, “
High Fidelity 3D Simulation of the GE90
,”
AIAA
Paper No. 2003-3996.
You do not currently have access to this content.