This study investigates on heat transfer enhancement in pin fin cooling channels. Experiments are conducted in a staggered pin fin array consisting of 15 rows. Heat transfer measurements are conducted in the pin fin cooling channel using the transient liquid crystal technique. The reference temperature is approximated by the fluid bulk temperature, acquired by thermocouples at specific positions. Thermal inertia of the used thermocouples is considered. One other problem that occurs while using relatively long thermocouples in short aspect ratio ducts is the heat conduction along the wires, the so-called stem effect. This can lead to erroneous temperature measurements. The impact of the thermocouple immersion length on the temperature measurement is investigated. A detailed assessment of the space and timewise varying temperature distribution is conducted for the appropriate reference temperature. This paper gives an overview about the experimental setup and the used transient measurement technique. Results are represented in terms of temperature distribution, heat transfer distribution, and averaged Nusselt number at the endwall.

References

References
1.
Bouchez
,
M.
,
Crampon
,
F.
,
Naour
,
B. L.
,
Wilhelmi
,
C.
,
Bubenheim
,
K.
,
Kuhn
,
M.
,
Mainzer
,
B.
,
Riccius
,
J.
,
Davoine
,
C.
,
Justin
,
J.-F.
,
von Wolfersdorf
,
J.
,
Abdelmoula
,
M.
,
Villace
, V
. F.
, and
Steelant
,
J.
,
2014
, “
Combustor and Material Integration for High Speed Aircraft in the European Research Program ATLLAS2
,”
AIAA
Paper No. 2014-2950.
2.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
(
1
), pp.
94
103
.
3.
VanFossen
,
G.
,
1982
, “
Heat Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Gas Turbines Power
,
104
(
2
), pp.
268
274
.
4.
Brigham
,
B. A.
, and
VanFossen
,
G.
,
1984
, “
Length to Diameter Ratio and Row Number Effects in Short Pin Fin Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
241
245
.
5.
Matsumoto
,
R.
,
Kikkawa
,
S.
, and
Senda
,
M.
,
1997
, “
Effect of Pin Fin Arrangement on Endwall Heat Transfer
,”
JSME Int. J., Ser. B
,
40
(
1
), pp.
142
151
.
6.
Metzger
,
D. E.
,
Fan
,
C.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
255
.
7.
Metzger
,
D. E.
,
Berry
,
R.
, and
Bronson
,
J.
,
1982
, “
Arrays Heat Transfer Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
700
706
.
8.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin Arrays Including Effects of Non-Uniform Arrays and Row Convergence
,”
ASME
Paper No. 86-GT-132.
9.
Chyu
,
M. K.
,
1990
, “
Heat Transfer and Pressure Drop for Short Pin–Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer
,
112
(
4
), pp.
926
932
.
10.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Shih
,
T. I. P.
,
1999
, “
Heat Transfer Contributions of Pins and Endwall in Pin–Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
(
2
), pp.
257
263
.
11.
Yeh
,
J. J.
, and
Chyu
,
M. K.
,
1998
, “
Heat Transfer of Staggered Pin Fin Arrays
,” Master's thesis, Masters Presentations/Papers and Bennett Poster Competition,
Carnegie Mellon University
,
Pittsburgh, PA
.
12.
Chyu
,
M.
,
Yen
,
C.
, and
Siw
,
S.
,
2007
, “
Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Diamond Shaped Elements
,”
ASME
Paper No. GT2007-28306.
13.
Ames
,
F. E.
,
Nordquist
,
C. A.
, and
Klennert
,
L. A.
,
2007
, “
Endwall Heat Transfer Measurements in a Staggered Pin Fin Array With an Adiabatic Pin
,”
ASME
Paper No. GT2007-27432.
14.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2013
, “
Effects of Non-Uniform Streamwise Spacing in Low Aspect Ratio Pin Fin Arrays
,”
ASME
Paper No. GT2013-95889.
15.
Lawson
,
S. A.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Multiple Row Arrays of Low Aspect Ratio Pin Fins
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4099
4109
.
16.
Jenkins
,
S. C.
,
Shevchuk
,
I. V.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2012
, “
Transient Thermal Field Measurements in a High Aspect Ratio Channel Related to Transient Thermochromic Liquid Crystal Experiments
,”
ASME J. Turbomach.
,
134
(
3
), p.
031002
.
17.
Tarnopolsky
,
M.
, and
Seginer
,
I.
,
1999
, “
Leaf Temperature Error From Heat Conduction Along Thermocouple Wires
,”
Agric. For. Meteorol.
,
93
(
3
), pp.
185
194
.
18.
Dickinson
,
R. J.
,
1985
, “
Thermal Conduction Errors of Manganin–Constantan Thermocouple Arrays
,”
Phys. Med. Biol.
,
30
(
5
), pp.
445
453
.
19.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.
20.
Poser
,
R.
,
2010
, “
Transient Heat Transfer Experiments in Complex Geometries Using Liquid Crystal Thermography
,” Ph.D. thesis, ITLR, University of Stuttgart, Stuttgart, Germany.
21.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2004
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
22.
Vogel
,
G.
, and
Weigand
,
B.
,
2001
, “
A New Evaluation Method for Transient Liquid Crystal Experiments
,”
ASME
Paper No. NHTC2001-20250.
23.
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2010
, “
Turbine Blade Internal Cooling—Selected Experimental Approaches
,”
Internal Blade Cooling
(VKI Lecture Series 2010-5), von Karman Institute, Rhode Saint Genese, Belgium.
24.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
. “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
Meas. Sci. Technol.
,
23
(
11
), pp.
1
13
.
25.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2002
,
Heat Transfer Handbook
,
Wiley
,
Hoboken, NJ
.
26.
Pantazis
,
S.
,
Buthig
,
J.
, and
Jousten
,
K.
,
2014
, “
Conjugate Heat Transfer Simulations of a Thermocouple Sensor in a Low Temperature Nitrogen Gas Ambient
,”
Int. J. Heat Mass Transfer
,
70
, pp.
536
544
.
27.
Childs
,
P. R. N.
,
Greenwood
,
J. R.
, and
Long
,
C. A.
,
2000
, “
Review of Temperature Measurement
,”
Rev. Sci. Instrum., Am. Inst. Phys.
,
71
(
8
), pp.
2959
2978
.
28.
Bernhard
,
F.
,
2004
,
Technische Temperaturmessung
,
Springer-Verlag
,
Berlin
.
29.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
30.
Waidmann
,
C.
,
Poser
,
R.
,
von Wolfersdorf
,
J.
,
Fois
,
M.
, and
Semmler
,
K.
,
2013
, “
Investigations of Heat Transfer and Pressure Loss in an Engine-Similar Two-Pass Internal Blade Cooling Configuration
,”
10th European Conference on Turbomachinery
, Madrid, Spain, Mar. 23–27, pp.
1051
1063
.
31.
Poser
,
R.
,
von Wolfersdorf
,
J.
,
Lutum
,
E.
, and
Semmler
,
K.
,
2008
, “
Performing Heat Transfer Experiments in Blade Cooling Circuits Using a Transient Technique With Thermochromic Liquid Crystals
,”
ASME
Paper No. GT2008-50364.
32.
Dittus
,
F.
, and
Boelter
,
L.
,
1930
,
Publications in Engineering
, Vol.
2
,
University of California
,
Berkeley
, p.
443
.
You do not currently have access to this content.