Conduction in thin disks can be modeled using the fin equation, and there are analytical solutions of this equation for a circular disk with a constant heat-transfer coefficient. However, convection (particularly free convection) in rotating-disk systems is a conjugate problem: the heat transfer in the fluid and the solid are coupled, and the relative effects of conduction and convection are related to the Biot number,  Bi, which in turn is related to the Nusselt number. In principle, if the radial distribution of the disk temperature is known then Bi  can be determined numerically. But the determination of heat flux from temperature measurements is an example of an inverse problem where small uncertainties in the temperatures can create large uncertainties in the computed heat flux. In this paper, Bayesian statistics are applied to the inverse solution of the circular fin equation to produce reliable estimates of Bi for rotating disks, and numerical experiments using simulated noisy temperature measurements are used to demonstrate the effectiveness of the Bayesian method. Using published experimental temperature measurements, the method is also applied to the conjugate problem of buoyancy-induced flow in the cavity between corotating compressor disks.

References

References
1.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
, pp.
154
178
.
2.
Kaipio
,
J.
, and
Somersalo
,
E.
,
2005
,
Statistical and Computational Inverse Problems
, Vol.
160
,
Springer
,
New York
.
3.
Kaipio
,
J. P.
, and
Fox
,
C.
,
2011
, “
The Bayesian Framework for Inverse Problems in Heat Transfer
,”
Heat Transfer Eng.
,
32
(
9
), pp.
718
753
.
4.
Orlande
,
H. R.
,
2012
, “
Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications
,”
ASME J. Heat Transfer
,
134
(
3
), p.
031011
.
5.
Wang
,
J.
, and
Zabaras
,
N.
,
2004
, “
A Bayesian Inference Approach to the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
47
(
17
), pp.
3927
3941
.
6.
Gnanasekaran
,
N.
, and
Balaji
,
C.
,
2011
, “
A Bayesian Approach for the Simultaneous Estimation of Surface Heat Transfer Coefficient and Thermal Conductivity From Steady State Experiments on Fins
,”
Int. J. Heat Mass Transfer
,
54
(
13
), pp.
3060
3068
.
7.
Owen
,
J. M.
, and
Long
,
C. A.
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.
8.
Childs
,
P. R.
,
2010
,
Rotating Flow
,
Elsevier
,
Oxford, UK
, pp.
249
298
.
9.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1995
,
Flow and Heat Transfer in Rotating Disc Systems—Rotating Cavities
, Vol.
2
,
Research Studies Press, Taunton, UK/Wiley
,
New York
, pp.
193
230
.
10.
Tritton
,
D. J.
,
1988
,
Physical Fluid Dynamics
,
Clarendon Press
,
Oxford, UK
, pp.
215
240
.
11.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1979
, “
Vortex Breakdown in a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
90
(01), pp.
109
127
.
12.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.
13.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Heat Transfer
,”
ASME J. Turbomach.
,
114
(
1
), pp.
229
236
.
14.
Bohn
,
D. E.
,
Deutsch
,
G. N.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Rotating Cavity With Axial Throughflow
,”
ASME
Paper No. 2000-GT-280.
15.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.
16.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-27174.
17.
Matérn
,
B.
,
1960
, “
Spatial Variation. Stochastic Models and Their Application to Some Problems in Forest Surveys and Other Sampling Investigations
,”
Medd. Statens Skogsforskningsinstitut
,
49
(
5
), pp.
10
25
.
18.
Stein
,
M. L.
,
1999
,
Interpolation of Spatial Data: Some Theory for Kriging
,
Springer
,
New York
, pp.
11
13
.
19.
Tikhonov
,
A. N.
,
1977
,
Solution of Ill-Posed Problems
,
Halsted Press
,
Washington, D.C
.
20.
Chorin
,
A. J.
, and
Hald
,
O. H.
,
2009
,
Stochastic Tools in Mathematics and Science
, Vol.
1
,
Springer, Dordrecht
, pp.
121
126
.
21.
Alexiou
,
A.
,
Hills
,
N. J.
,
Long
,
C. A.
,
Turner
,
A. B.
, and
Millward
,
J. A.
,
2000
, “
Heat Transfer in High-Pressure Compressor Gas Turbine Internal Air Systems: A Rotating Disc-Cone Cavity With Axial Throughflow
,”
Exp. Heat Transfer
,
13
(
4
), pp.
299
328
.
22.
Miché
,
N. D.
,
2009
, “
Flow and Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,” D.Phil.,
University of Sussex
,
Sussex, UK
.
23.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2012
, “
Local Measurements of Disk Heat Transfer in Heated Rotating Cavities for Several Flow Regimes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051016
.
24.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2014
, “
The Effects of Rotation and Mass Flow on Local Heat Transfer in Rotating Cavities With Axial Throughflow
,”
ASME
Paper No. GT2014-26228.
25.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems—Rotor-Stator Systems
, Vol.
1
,
Research Studies Press, Taunton, UK/Wiley
,
New York
.
26.
Owen
,
J. M.
, and
Tang
,
H.
, “
Theoretical Model of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
(accepted).
You do not currently have access to this content.