For advanced turbomachinery development, there is increasing interest to carry out unsteady analyses for flows through multiple bladerows during a design stage. Even with the huge increase in computer processing power currently available, direct unsteady calculations in a whole annulus domain are still very time consuming. Efficient alternative methods with truncations in time and/or in space have been developed for unsteady turbomachinery flows in the past 20 years or so, but they all are associated with related limitations. The present development is motivated to maintain as many modeling fidelities of direct unsteady solution methods as possible while still have a significant speed-up. To this end, a new steady-solution-like unsteady time-domain methodology has been developed for bladerow interactions. No circumferential domain truncation is required so that a direct periodic (repeating) condition can be applied. For each mesh cell, the temporal gradient term as required to balance the discretized unsteady flow equation is obtained by specially sequenced spatial variations of corresponding cells in multiple-passages. Consequently, the rotor–stator interface treatment becomes completely compatible to that of a direct unsteady solution. Thus a fully conservative interface is easily achieved, in contrast to existing truncated models where interface treatments tend to be complicated and nonconservative. The simultaneous solution procedure with the space–time gradient (STG) link enables an unsteady flow solution to converge at a rate compatible to a steady solution. The background, motivation/justification, basic methodology, and some preliminary verifications are described in this paper as Part I. Further validations and applications with extension to more complex configurations and flow conditions will be presented in Part II.

References

References
1.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.
2.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
, pp.
329
341
.
3.
Tallman
,
J. A.
,
2014
, “
Unsteady Half-Annulus Computational Fluid Dynamics Calculations of Thermal Migration Through a Cooled 2.5 Stage High-Pressure Turbine
,”
ASME J. Turbomach.
,
136
(
8
), p.
081012
.
4.
Brandvik
,
T.
, and
Pullan
,
G.
,
2010
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.
5.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2013
, “
Computation of Turbomachinery Flows With a Parallel Unstructured Mesh Navier–Stokes Equations Solver on GPUs
,”
AIAA
Paper No. 2013-2864.
6.
Erdos
,
J. I.
,
Alzner
,
E.
, and
McNally
,
W.
,
1977
, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
,
15
(
11
), pp.
1559
1568
.
7.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
8.
He
,
L.
,
1990
, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
714
722
.
9.
He
,
L.
,
1992
, “
A Method of Simulating Unsteady Turbomachinery Flows With Multiple Perturbations
,”
AIAA J.
,
30
(
11
), pp.
2730
2735
.
10.
Li
,
H. D.
, and
He
,
L.
,
2005
, “
Blade Aerodynamic Damping Variation With Rotor–Stator Gap—A Computational Study Using Single-Passage Approach
,”
ASME J. Turbomach.
,
127
(
3
), pp.
573
579
.
11.
Li
,
H. D.
, and
He
,
L.
,
2005
, “
Toward Intra-Row Gap Optimization for One and Half Stage Transonic Compressor
,”
ASME J. Turbomach.
,
127
(
3
), pp.
589
598
.
12.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
13.
Rahim
,
A.
,
Khanal
,
B.
,
He
,
L.
, and
Romero
,
E.
,
2014
, “
Effect of Nozzle Guide Vane Lean Under Influence of Inlet Temperature Traverse
,”
ASME J. Turbomach.
,
136
(
7
), p.
071002
.
14.
Biesinger
,
T.
,
Cornelius
,
C.
,
Rube
,
C.
,
Braune
,
A.
,
Campregher
,
R.
,
Godin
,
P. G.
,
Schmid
,
G.
, and
Zori
,
L.
,
2010
, “
Unsteady CFD Methods in a Commercial Solver for Turbomachinery Applications
,”
ASME
Paper No. GT2010-22762.
15.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
,
2002
, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,”
J. Propul. Power
,
18
(
6
), pp.
1139
1152
.
16.
Gerolymos
,
G. A.
,
2013
, “
Filtered Chorochronic Interface as a Capacity for 3-D Unsteady Through Flow Analysis of Multistage Turbomachinery
,”
Int. J. Comput. Fluid D.
,
27
(
2
), pp.
100
117
.
17.
Ning
,
W.
, and
He
,
L.
,
1998
, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Non-Linear Harmonic Euler Methods
,”
ASME J. Turbomach.
,
120
(
3
), pp.
508
514
.
18.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.
19.
Vilmin
,
S.
,
Lorrain
,
É.
,
Tartinville
,
B.
,
Capron
,
A.
, and
Hirsch
,
C.
,
2012
, “
The Nonlinear Harmonic Method: From Single Stage to Multi-Row Effects
,”
Int. J. Comput. Fluid D.
,
27
(
2
), pp.
88
99
.
20.
Grosvenor
,
A. D.
,
Rixon
,
G. S.
,
Sailer
,
L. M.
,
Matheson
,
M. A.
,
Gutzwiller
,
D. P.
,
Demeulenaere
,
A.
,
Gontier
,
M.
, and
Strazisar
,
A. J.
,
2015
, “
High Resolution RANS Nonlinear Harmonic Study of Stage 67 Tip Injection Physics
,”
ASME J. Turbomach.
,
137
(
5
), p.
051005
.
21.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascade Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
22.
Hall
,
K. C.
, and
Ekici
,
K.
,
2005
, “
Multistage Coupling for Unsteady Flows in Turbomachinery
,”
AIAA J.
,
43
(
3
), pp.
624
632
.
23.
Ekici
,
K.
, and
Hall
,
K. C.
,
2007
, “
Nonlinear Analysis of Unsteady Flows in Multistage Turbomachines Using Harmonic Balance
,”
AIAA J.
,
45
(
5
), pp.
1047
1057
.
24.
Sicot
,
F.
,
Dufour
,
G.
, and
Gourdain
,
N.
,
2011
, “
A Time-Domain Harmonic Balance Method for Rotor/Stator Interactions
,”
ASME J. Turbomach.
,
134
(
1
), p.
011001
.
25.
Sicot
,
F.
,
Guédeney
,
T.
, and
Dufour
,
G.
,
2013
, “
Time-Domain Harmonic Balance Method for Aerodynamic and Aeroelastic Simulations of Turbomachinery Flows
,”
Int. J. Comput. Fluid D.
,
27
(
2
), pp.
68
78
.
26.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Volgt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME
Paper No. GT2014-25230.
27.
Gomar
,
A.
,
2014
, “
Multi-Frequential Harmonic Balance Approach for the Simulation of Contra-Rotating Open Rotors: Application to Aeroelasticity
,” Ph.D. thesis, Institut Des Sciences Et Technologies, Paris Institute of Technology, Paris, France.
28.
Gomar
,
A.
,
Bouvy
,
Q.
,
Sicot
,
F.
,
Dufour
,
G.
,
Cinnella
,
P.
, and
François
,
B.
,
2014
, “
Convergence of Fourier-Based Time Methods for Turbomachinery Wake Passing Problems
,”
J. Comput. Phys.
,
278
, pp.
229
256
.
29.
Roclawski
,
H.
, and
Hellmann
,
D.-H.
,
2006
, “
Rotor–Stator Interaction of a Radial Centrifugal Pump Stage With Minimum Stage Diameter
,”
4th WSEAS International Conference on Fluid Mechanics and Aerodynamics
, Elounda, Greece, Aug. 21–23, pp.
301
308
.
30.
Karnahl
,
J.
,
Wolfersdorf
,
J. V.
,
Tham
,
K.-M.
,
Wilson
,
M.
, and
Lock
,
G.
,
2011
, “
CFD Simulations of Flow and Heat Transfer in a Pre-Swirl System: Influence of Rotating-Stationary Domain Interface
,”
ASME
Paper No. GT2011-45085.
31.
Vunnam
,
K.
, and
Hoover
,
R.
,
2011
, “
Modeling of Inlet Distortion Using a Combined Turbofan and Nacelle Inlet Model During Crosswind and Low Speed Forward Operation
,”
ASME
Paper No. GT2011-46466.
32.
Bothe
,
F.
,
Friebe
,
C.
,
Heinrich
,
M.
, and
Schwarze
,
R.
,
2014
, “
CFD Simulation of Incompressible Turbomachinery—A Comparison of Results From ansys Fluent and openfoam
,”
ASME
Paper No. GT2014-26338.
33.
Li
,
H. D.
, and
He
,
L.
,
2003
, “
Blade Count and Clocking Effects on Three-Bladerow Interaction in a Transonic Turbine
,”
ASME J. Turbomach.
,
125
(
4
), pp.
632
640
.
34.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,” Ph.D. thesis, St. Hugh's College, University of Oxford, Oxford, UK.
35.
Moinier
,
P.
,
Müller
,
J.-D.
, and
Giles
,
M. B.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.
36.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 1991-1596.
37.
Martinelli
,
L.
,
1987
, “
Calculations of Viscous Flows With a Multigrid Methods
,” Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.
38.
Crumpton
,
P. I.
, and
Giles
,
M. B.
,
1996
, “
Multigrid Aircraft Computations Using the OPlus Parallel Library
,”
Parallel Computational Fluid Dynamics: Implementations and Results Using Parallel Computers
,
A.
Ecer
,
J.
Periaux
,
N.
Satofuka
, and
S.
Taylor
, eds.,
North-Holland
,
Amsterdam
, pp.
339
346
.
39.
He
,
L.
,
2006
, “
Fourier Modeling of Steady and Unsteady Nonaxisymmetrical Flows
,”
J. Propul. Power
,
22
(
1
), pp.
197
201
.
40.
McMullen
,
M. S.
, and
Jameson
,
A.
,
2006
, “
The Computational Efficiency of Non-Linear Frequency Domain Methods
,”
J. Comput. Phys.
,
212
(
2
), pp.
637
661
.
41.
Chana
,
K. S.
,
Hurrion
,
J. R.
, and
Jones
,
T. V.
,
2003
, “
The Design, Development and Testing of a Non-Uniform Inlet Temperature Generator for the QinetiQ Transient Turbine Research Facility
,”
ASME
Paper No. GT2003-38469.
You do not currently have access to this content.