Buoyancy-induced flow occurs in the cavity between two corotating compressor disks when the temperature of the disks and shroud is higher than that of the air in the cavity. Coriolis forces in the rotating fluid create cyclonic and anticyclonic circulations inside the cavity, and—as such flows are three-dimensional and unsteady—the heat transfer from the solid surfaces to the air is difficult either to compute or to measure. As these flows also tend to be unstable, one flow structure can change quasi-randomly to another. This makes it hard for designers of aeroengines to calculate the transient temperature changes, thermal stresses, and radial growth of the disks during engine accelerations and decelerations. This paper reviews published research on buoyancy-induced flow in closed rotating cavities and in open cavities with either an axial throughflow or a radial inflow of air. In particular, it includes references to experimental data that could be used to validate cfd codes and numerical models.

References

References
1.
Childs
,
P. R. N.
,
2011
,
Rotating Flow
,
Elsevier
,
Oxford, UK
.
2.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1995
,
Flow and Heat Transfer in Rotating Disc Systems, Volume 2—Rotating Cavities
,
Research Studies Press
,
Taunton, UK
.
3.
Shevchuk
,
I. V.
,
2009
,
Convective Heat and Mass Transfer in Rotating Disc Systems
,
Springer
,
Heidelberg
.
4.
Tritton
,
D. J.
,
1988
,
Physical Fluid Dynamics
,
OUP
,
New York
.
5.
King
,
M. P.
,
2003
, “
Convective Heat Transfer in a Rotating Annulus
,” Ph.D. thesis, University of Bath, Bath, UK.
6.
Grossmann
,
S.
, and
Lohse
,
D.
,
2000
, “
Scaling in Thermal Convection: A Unifying Theory
,”
J. Fluid Mech.
,
407
, pp.
27
56
.
7.
Hollands
,
K. G. T.
,
Raithby
,
G. D.
, and
Konicek
,
L.
,
1975
, “
Correlation Equations for Free Convection Heat Transfer in Horizontal Layers of Air and Water
,”
Int. J. Heat Mass Transfer
,
18
(7–8), pp.
879
884
.
8.
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Source-Sink Flow Inside a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
155
, pp.
233
265
.
9.
Bohn
,
D.
,
Dibelius
,
G. H.
,
Deuker
,
E.
, and
Emunds
,
R.
,
1994
, “
Flow Pattern and Heat Transfer in a Closed Rotating Annulus
,”
ASME J. Turbomach.
,
116
(3), pp.
542
547
.
10.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(1), pp.
175
183
.
11.
Bohn
,
D.
,
Edmunds
,
R.
,
Gorzelitz
,
V.
, and
Kruger
,
U.
,
1996
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli II
,”
ASME J. Turbomach.
,
118
(1), pp.
11
19
.
12.
Bohn
,
D.
, and
Gier
,
J.
,
1998
, “
The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
120
(4), pp.
824
830
.
13.
King
,
M. P.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2007
, “
Rayleigh–Benard Convection in Open and Closed Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(2), pp.
305
311
.
14.
Owen
,
J. M.
,
2010
, “
Thermodynamic Analysis of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
132
(3), p.
031006
.
15.
Lewis
,
T. W.
,
1999
, “
Numerical Simulation of Buoyancy-Induced Flow in a Sealed Rotating Cavity
,” Ph.D. thesis, University of Bath, Bath, UK.
16.
Niemela
,
J. J.
,
Skrbek
,
L.
,
Sreenivasan
,
K. R.
, and
Donnelly
,
R. J.
,
2000
, “
Turbulent Convection at Very High Rayleigh Numbers
,”
Nature
,
404
(
6780
), pp.
837
840
.
17.
Sun
,
X.
,
Kilfoil
,
A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2004
, “
Numerical Simulation of Natural Convection in Stationary and Rotating Cavities
,”
ASME
Paper No. GT2004-53528.
18.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1979
, “
Vortex Breakdown in a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
90
(1), pp.
109
127
.
19.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(1), pp.
237
246
.
20.
Bohn
,
D.
,
Deutsch
,
G.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Rotating Cavity With Axial Throughflow
,”
ASME
Paper No. 2000-GT-0280.
21.
Owen
,
J. M.
, and
Powell
,
J.
,
2006
, “
Buoyancy-Induced Flow in a Heated Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
128
(1), pp.
128
134
.
22.
Long
,
C. A.
,
Miche
,
N. D. D.
, and
Childs
,
P. R. N.
,
2007
, “
Flow Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(6), pp.
1391
1404
.
23.
Johnson
,
B. V.
,
Lin
,
J. D.
,
Daniels
,
W. A.
, and
Paolillo
,
R.
,
2006
, “
Flow Characteristics and Stability Analysis of Variable-Density Rotating Flows in Compressor-Disk Cavities
,”
ASME J. Eng. Gas Turbines Power
,
128
(1), pp.
118
127
.
24.
Dweik
,
Z.
,
Briley
,
R.
,
Swafford
,
T.
, and
Hunt
,
B.
,
2009
, “
Computational Study of the Heat Transfer of the Buoyancy-Driven Rotating Cavity With Axial Throughflow of Cooling Air
,”
ASME
Paper No. GT2009-59978.
25.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Heat Transfer
,”
ASME J. Turbomach.
,
114
(1), pp.
229
236
.
26.
Long
,
C. A.
,
1994
, “
Disk Heat Transfer in a Rotating Cavity With an Axial Throughflow of Cooling Air
,”
Int. J. Heat Fluid Flow
,
15
(4), pp.
307
316
.
27.
Sri Kantha
,
M.
,
1987
, “
A Correlation of Heat Transfer Measurements From the Mk II Rotating Cavity Rig With an Axial Throughflow of Coolant
,” Thermo-Fluid Mechanics Research Centre, University of Sussex, Brighton, UK, Report No. 87/TFMRC/TN48.
28.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(6), pp.
1405
1417
.
29.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-27174.
30.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Discs
,”
ASME
Paper No. GT2015-42029.
31.
Gunther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2014
, “
The Effects of Rotation and Mass Flow on Local Heat Transfer in Rotating Cavities With Axial Throughflow
,”
ASME
Paper No. GT2014-26228.
32.
Iacovides
,
H.
, and
Chew
,
J. W.
,
1993
, “
The Computation of Convective Heat Transfer in Rotating Cavities
,”
Int. J. Heat Fluid Flow
,
14
(2), pp.
146
154
.
33.
Long
,
C. A.
, and
Tucker
,
P. G.
,
1994
, “
Numerical Computation of Laminar Flow in a Heated Rotating Cavity With an Axial Throughflow of Air
,”
Int. J. Numer. Methods Heat Fluid Flow
,
4
(4), pp.
347
365
.
34.
Tucker
,
P. G.
,
2002
, “
Temporal Behaviour of Flow in Rotating Cavities
,”
Numer. Heat Transfer A
,
41
(6–7), pp
611
627
.
35.
Tian
,
S.
,
Tao
,
Z.
,
Ding
,
S.
, and
Xu
,
G.
,
2004
, “
Investigation of Flow and Heat Transfer in a Rotating Cavity With Axial Throughflow of Cooling Air
,”
ASME
Paper No. GT2004-53525.
36.
Sun
,
X.
,
Linblad
,
K.
,
Chew
,
J. W.
, and
Young
,
C.
,
2007
, “
LES and RANS Investigations Into Buoyancy-Affected Convection in a Rotating Cavity With a Central Axial Throughflow
,”
ASME J. Eng. Gas Turbines Power
,
129
(2), pp.
318
325
.
37.
Long
,
C. A.
,
Alexiou
,
A.
, and
Smout
,
P. D.
,
2003
, “
Heat Transfer in H.P. Compressor Internal Air Systems: Measurements From the Peripheral Shroud of a Rotating Cavity with Axial Throughflow
,”
2nd International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
(
HEFAT 2003
),
Victoria Falls, Zambia
, June 23–25, Paper No. LC1.
38.
Owen
,
J. M.
,
Abrahamsson
,
H.
, and
Linblad
,
K.
,
2007
, “
Buoyancy-Induced Flow in Open Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(4), pp.
893
900
.
39.
Tan
,
Q.
,
Ren
,
J.
, and
Jiang
,
H.
,
2009
, “
Prediction of Flow Features in Rotating Cavities With Axial Throughflow by RANS and LES
,”
ASME
Paper No. GT2009-59428.
40.
Tan
,
Q.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Prediction of 3D Unsteady Flow and Heat Transfer in Rotating Cavity by Discontinuous Galerkin Method and Transition Model
,”
ASME
Paper No. GT2014-26584.
41.
He
,
L.
,
2011
, “
Efficient Computational Model for Nonaxisymmetric Flow and Heat Transfer in Rotating Cavity
,”
ASME J. Turbomach.
,
133
(
2
), p.
021018
.
42.
Bohn
,
D.
,
Ren
,
J.
, and
Tuemmers
,
C.
,
2006
, “
Investigation of the Unstable Flow Structure in a Rotating Cavity
,”
ASME
Paper No. GT2006-90494.
43.
Tucker
,
P.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Jefferson-Loveday
,
R.
,
Tyacke
,
J.
, and
Liu
,
Y.
,
2011
, “
Hybrid LES Approach for Practical Turbomachinery Flows—Part I: Hierarchy and Example Simulations
,”
ASME J. Turbomach.
,
134
(
2
), p.
021023
.
44.
Tucker
,
P.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Xia
,
H.
,
Ray
,
P.
,
Tyacke
,
J.
, and
Dawes
,
W.
,
2011
, “
Hybrid LES Approach for Practical Turbomachinery Flows—Part II: Further Applications
,”
ASME J. Turbomach.
,
134
(
2
), p.
021024
.
45.
Martyushev
,
L. M.
, and
Seleznev
,
V. D.
,
2006
, “
Maximum Entropy Production Principle in Physics, Chemistry and Biology
,”
Phys. Rep.
,
426
(1), pp.
1
45
.
46.
Chew
,
J. W.
,
Farthing
,
P. R.
,
Owen
,
J. M.
, and
Stratford
,
B. S.
,
1989
, “
The Use of Fins to Reduce the Pressure Drop in a Rotating Cavity With a Radial Inflow
,”
ASME J. Turbomach.
,
111
(3), pp.
349
356
.
47.
Farthing
,
P. R.
,
Chew
,
J. W.
, and
Owen
,
J. M.
,
1991
, “
The Use of Deswirl Nozzles to Reduce the Pressure Drop in a Rotating Cavity
,”
ASME J. Turbomach.
,
113
(1), pp.
106
114
.
48.
Firouzian
,
M.
,
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Flow and Heat Transfer in a Rotating Cylindrical Cavity With a Radial Inflow of Fluid. Part I: The Flow Structure
,”
Int. J. Heat Fluid Flow
,
6
(4), pp.
228
234
.
49.
Firouzian
,
M.
,
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1986
, “
Flow and Heat Transfer in a Rotating Cylindrical Cavity With a Radial Inflow of Fluid. Part II: Velocity, Pressure and Heat Transfer Measurements
,”
Int. J. Heat Fluid Flow
,
7
(1), pp.
21
27
.
50.
Gunther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2012
, “
Local Measurements of Disk Heat Transfer in Heated Rotating Cavities for Several Flow Regimes
,”
ASME J. Turbomach.
,
134
(5), p.
051016
.
51.
Kumar
,
V. B. G.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2013
, “
Rotating Flow and Heat Transfer in Cylindrical Cavities With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
135
(3), p.
032502
.
52.
Farthing
,
P. R.
,
1989
, “
The Effect of Geometry on Flow and Heat Transfer in a Rotating Cavity
,” Ph.D. thesis, University of Sussex, Brighton, UK.
53.
Atkins
,
N. R.
,
2013
, “
Investigation of a Radial-Inflow Bleed as a Potential for Compressor Clearance Control
,”
ASME
Paper No. GT2013-95768.
You do not currently have access to this content.