This paper presents a computational study for a high-speed centrifugal compressor stage with a design pressure ratio equal to 4, the stage consisting of a splittered unshrouded impeller and a wedged vaned diffuser. The aim of this paper is to investigate numerically the modifications of the flow structure during a surge cycle. The investigations are based on the results of unsteady three-dimensional, compressible flow simulations, using large eddy simulation (LES) model. Instantaneous and mean flow field analyses are presented in the impeller inducer and in the vaned diffuser region through one surge cycle time intervals. The computational data compare favorably with the measured data, from the literature, for the same compressor and operational point. The surge event phases are well detected inside the impeller and diffuser. The time-averaged loading on the impeller main blade is maximum near the trialing edge and near the tip. The amplitude of the unsteady pressure fluctuation is maximum for the flow reversal condition and reaches values up to 70% of the dynamic pressure. The diffuser vane exhibits high-pressure fluctuation from the vane leading edge to 50% of the chord length. High-pressure fluctuation is detected during the forward flow recovery condition as a result of the shock wave that moves toward the diffuser outlet.

References

References
1.
Borello
,
D.
,
Hanjalic
,
K.
, and
Rispoli
,
F.
,
2007
, “
Computation of Tip-Leakage Flow in a Linear Compressor Cascade With a Second-Moment Turbulence Closure
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
587
601
.
2.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
3.
McMullan
,
W. A.
, and
Page
,
G. J.
,
2012
, “
Towards Large Eddy Simulation of Gas Turbine Compressors
,”
Prog. Aerosp. Sci.
,
52
, pp.
30
47
.
4.
Tauveron
,
N.
,
2010
, “
Simulation of a Compressor Cascade With Stalled Flow Using Large Eddy Simulation With Two-Layer Approximate Boundary Conditions
,”
Nucl. Eng. Des.
,
240
(
2
), pp.
321
335
.
5.
Tyacke
,
J.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
,
Vadlamani
,
N. R.
,
Watson
,
R.
,
Naqavi
,
I.
, and
Yang
,
X.
,
2014
, “
Large Eddy Simulation for Turbines: Methodologies, Cost and Future Outlooks
,”
ASME J. Turbomach.
,
136
(
6
), p.
061009
.
6.
Gourdain
,
N.
,
2013
, “
Validation of Large-Eddy Simulation for the Prediction of Compressible Flow in an Axial Compressor Stage
,”
ASME
Paper No. GT2013-94550.
7.
Semlitsch
,
B.
,
Jyothishkumar
,
V.
,
Mihaescu
,
M.
,
Fuchs
,
L.
, and
Gutmark
,
E. J.
,
2013
, “
Investigation of the Surge Phenomena in a Centrifugal Compressor Using Large Eddy Simulation
,”
ASME
Paper No. IMECE2013-66301.
8.
Hellstrom
,
F.
,
Gutmark
,
E.
, and
Fuchs
,
L.
,
2012
, “
Large Eddy Simulation of the Unsteady Flow in a Radial Compressor Operating Near Surge
,”
ASME J. Turbomach.
,
134
(
5
), p.
051006
.
9.
McKain
,
T. F.
, and
Holbrook
,
G. J.
,
1997
, “
Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-23268.
10.
Spakovszky
,
Z. S.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.
11.
Skoch
,
G. J.
,
Prahst
,
P. S.
,
Wernet
,
M. P.
, and
Strazisar
,
A. J.
,
1997
, “
Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller
,”
ASME
Paper No. 97-GT-342.
12.
Wernet
,
M. P.
,
Bright
,
M. M.
, and
Skoch
,
G. J.
,
2002
, “
An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV
,”
ASME J. Turbomach.
,
123
(
2
), pp.
418
428
.
13.
Ni
,
R. H.
, and
Fan
,
G.
,
2009
, “
CFD Simulation of a High-Speed Centrifugal Compressor Using Code Leo and Code Wand
,”
AeroDynamic Solutions, Inc.,
Pleasanton, CA
, Technical Report.
14.
Lurie
,
E. A.
,
Vane Slooten
,
P. R.
,
Medic
,
G.
,
Mulugeta
,
J. M.
,
Holley
,
B. M.
,
Feng
,
J.
,
Sharma
,
O.
, and
Ni
,
R. H.
,
2011
, “
Design of a High Efficiency Compact Centrifugal Compressor for Rotorcraft Applications
,” The American Helicopter Society 67th Annual Forum, Virginia Beach, VA, May 3–5.
15.
Lim
,
K.
,
Yoon
,
S.
,
Goyne
,
C.
,
Lin
,
Z.
, and
Allaire
,
P.
,
2012
, “
Design and Characterization of a Centrifugal Compressor Surge Test Rig
,”
Int. J. Rotating Mach.
,
2011
, p.
738275
.
16.
Trébinjac
,
I.
,
Bulot
,
N.
, and
Buffaz
,
N.
,
2011
, “
Analysis of the Flow in a Transonic Centrifugal Compressor Stage From Choke to Surge
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
7
), pp.
919
929
.
17.
Babak
,
M.
,
2010
, “
CFD Analysis of a Surge Suppression Device for High Pressure Ratio Centrifugal Compressor
,”
ANSYS Conference 2010
, Frymburk, Czech Republic, Oct. 6–8.
18.
Galindo
,
J.
,
Climent
,
H.
,
Guardiola
,
C.
, and
Tiseira
,
A.
,
2009
, “
On the Effect of Pulsating Flow on Surge Margin of Small Centrifugal Compressors for Automotive Engines
,”
Exp. Therm. Fluid Sci.
,
33
(
8
), pp.
1163
1171
.
19.
Bulot
,
N.
,
Trébinjac
,
I.
,
Ottavy
,
X.
,
Kulisa
,
P.
,
Halter
,
G.
,
Paoletti
,
B.
, and
Krikorian
,
P.
,
2009
, “
Experimental and Numerical Investigation of the Flow Field in a High-Pressure Centrifugal Compressor Impeller Near Surge
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
6
), pp.
657
666
.
20.
Bulot
,
N.
, and
Trébinjac
,
I.
,
2009
, “
Effect of the Unsteadiness on the Diffuser Flow in a Transonic Centrifugal Compressor Stage
,”
Int. J. Rotating Mach.
,
2009
, p.
932593
.
21.
Arnulfi
,
G.
,
Blanchini
,
F.
,
Giannattasio
,
P.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
2005
, “
Extensive Study on the Control of Centrifugal Compressor Surge
,”
Proc. Inst. Mech. Eng., Part A
,
220
(
3
), pp.
289
304
.
22.
Stein
,
A.
,
2000
, “
Computational Analysis of Stall and Separation Control in Centrifugal Compressors
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
23.
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2004
, “
Rotating Stall in Centrifugal Compressor Vaneless Diffuser: Experimental Analysis of Geometrical Parameters Influence on Phenomenon Evolution
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
433
442
.
24.
ANSYS, 2013, “ANSYS FLUENT Theory Guide” ANSYS Inc., Canonsburg, PA.
25.
Shahin
,
I.
,
Gadala
,
M.
,
Alqaradawi
,
M.
, and
Badr
,
O.
, “
Unsteady CFD Simulation for High Speed Centrifugal Compressor Operating Near Surge
,”
ASME
Paper No. GT2014-27336.
26.
Hathaway
,
M. D.
,
Herrick
,
G.
,
Chen
,
J.
, and
Webster
,
R.
,
2004
, “
Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a US Army Helicopter Gas Turbine Engine
,” Users Group Conference (
DOD_UGC'04
), Williamsburg, VA, June 7–11, pp.
166
177
.
27.
Crevel
,
F.
,
Gourdain
,
N.
, and
Moreau
,
S.
,
2014
, “
Numerical Simulation of Aerodynamic Instabilities in a Multistage High-Speed High-Pressure Compressor on Its Test-Rig—Part I: Rotating Stall
,”
ASME J. Turbomach.
,
136
(
10
), p.
101003
.
28.
Crevel
,
F.
,
Gourdain
,
N.
, and
Ottavy
,
X.
,
2014
, “
Numerical Simulation of Aerodynamic Instabilities in a Multistage High-Speed High-Pressure Compressor on Its Test Rig—Part II: Deep Surge
,”
ASME J. Turbomach.
,
136
(
10
), p.
101004
.
You do not currently have access to this content.