Existing thermal barrier coatings (TBCs) can be adapted enhancing their functionalities such that they not only protect critical components from hot gases but also can sense their own material temperature or other physical properties. The self-sensing capability is introduced by embedding optically active rare earth ions into the thermal barrier ceramic. When illuminated by light, the material starts to phosphoresce and the phosphorescence can provide in situ information on temperature, phase changes, corrosion, or erosion of the coating subject to the coating design. The integration of an on-line temperature detection system enables the full potential of TBCs to be realized due to improved accuracy in temperature measurement and early warning of degradation. This in turn will increase fuel efficiency and will reduce CO2 emissions. This paper reviews the previous implementation of such a measurement system into a Rolls-Royce jet engine using dysprosium doped yttrium-stabilized-zirconia (YSZ) as a single layer and a dual layer sensor coating material. The temperature measurements were carried out on cooled and uncooled components on a combustion chamber liner and on nozzle guide vanes (NGVs), respectively. The paper investigates the interpretation of those results looking at coating thickness effects and temperature gradients across the TBC. For the study, a specialized cyclic thermal gradient burner test rig was operated and instrumented using equivalent instrumentation to that used for the engine test. This unique rig enables the controlled heating of the coatings at different temperature regimes. A long-wavelength pyrometer was employed detecting the surface temperature of the coating in combination with the phosphorescence detector. A correction was applied to compensate for changes in emissivity using two methods. A thermocouple was used continuously measuring the substrate temperature of the sample. Typical gradients across the coating are less than 1 K/μm. As the excitation laser penetrates the coating, it generates phosphorescence from several locations throughout the coating and hence provides an integrated signal. The study successfully proved that the temperature indication from the phosphorescence coating remains between the surface and substrate temperature for all operating conditions. This demonstrates the possibility to measure inside the coating closer to the bond coat. The knowledge of the bond coat temperature is relevant to the growth of the thermally grown oxide (TGO) which is linked to the delamination of the coating and hence determines its life. Further, the data are related to a one-dimensional phosphorescence model determining the penetration depth of the laser and the emission.

References

References
1.
Boyce
,
M.
,
2001
,
Gas Turbine Engineering Handbook
,
2nd ed.
,
Gulf Professional Publishing
,
Houston, TX
.
2.
Choy
,
K.-L.
,
Heyes
,
A. L.
, and
Feist
,
J.
,
1999
, “
Thermal Barrier Coating With Thermoluminescent Indicator Material Embedded Therein
,” WO Patent Application PCT/GB1999/002,413.
3.
Steenbakker
,
R. J. L.
,
Feist
,
J. P.
,
Wellman
,
R. G.
, and
Nicholls
,
J. R.
,
2009
, “
Sensor Thermal Barrier Coatings: Remote In Situ Condition Monitoring of EB-PVD Coatings at Elevated Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
131
(
4
), p.
041301
.
4.
Feist
,
J. P.
, and
Nicholls
,
J. R.
,
2008
, “
Multi-Functional Material Compositions, Structures Incorporating the Same and Methods for Detecting Ageing in Luminescent Material Compositions
,” WO Patent No. WO2009/141623.
5.
Feist
,
J.
, and
Heyes
,
A.
,
2003
, “
Coatings and an Optical Method for Detecting Corrosion Process in Coatings
,” UK Patent No. 318929.
6.
Eldridge
,
J. I.
,
Singh
,
J.
, and
Wolfe
,
D. E.
,
2006
, “
Erosion-Indicating Thermal Barrier Coatings Using Luminescent Sublayers
,”
J. Am. Ceram. Soc.
,
89
(
10
), pp.
3252
3254
.
7.
Eldridge
,
J. I.
,
Bencic
,
T. J.
,
Spuckler
,
C. M.
,
Singh
,
J.
, and
Wolfe
,
D. E.
,
2006
, “
Delamination-Indicating Thermal Barrier Coatings Using YSZ:Eu Sublayers
,”
J. Am. Ceram. Soc.
,
89
(
10
), pp.
3246
3251
.
8.
Allison
,
S. W.
, and
Gillies
,
G. T.
,
1997
, “
Remote Thermometry With Thermographic Phosphors: Instrumentation and Applications
,”
Rev. Sci. Instrum.
,
68
(
7
), pp.
2615
2650
.
9.
Khalid
,
A. H.
,
Kontis
,
K.
, and
Behtash
,
H. Z.
,
2010
, “
Phosphor Thermometry in Gas Turbines: Consideration Factors
,”
Proc. Inst. Mech. Eng., Part G–J
,
224
(
G7
), pp.
745
755
.
10.
Brubach
,
J.
,
Pflitsch
,
C.
,
Dreizler
,
A.
, and
Atakan
,
B.
,
2013
, “
On Surface Temperature Measurements With Thermographic Phosphors: A Review
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
37
60
.
11.
Tobin
,
K.
,
Allison
,
S.
,
Cates
,
M.
,
Capps
,
G.
, and
Beshears
,
D.
,
1990
, “
High-Temperature Phosphor Thermometry of Rotating Turbine Blades
,”
AIAA J.
,
28
(
8
), pp.
1485
1490
.
12.
Cheruvu
,
N.
,
Chan
,
K.
, and
Viswanathan
,
R.
,
2006
, “
Evaluation, Degradation and Life Assessment of Coatings for Land Based Combustion Turbines
,”
Energy Mater.
,
1
(
1
), pp.
33
47
.
13.
Feist
,
J. P.
, and
Heyes
,
A. L.
,
2000
, “
Europium-Doped Yttria-Stabilized Zirconia for High-Temperature Phosphor Thermometry
,”
Proc. Inst. Mech. Eng., Part L
,
214
(
L1
), pp.
7
12
.
14.
Heyes
,
A. L.
,
Seefeldt
,
S.
, and
Feist
,
J. P.
,
2006
, “
Two-Colour Phosphor Thermometry for Surface Temperature Measurement
,”
Opt. Laser Technol.
,
38
(
4–6
), pp.
257
265
.
15.
Feist
,
J.
,
Sollazzo
,
P.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2011
, “
Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection
,”
ASME
Paper No. GT2012-69923.
16.
Feist
,
J.
,
Sollazzo
,
P.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2013
, “
Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012101
.
17.
Feist
,
J.
,
Sollazzo
,
P.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2012
, “
Precision Temperature Detection Using a Phosphorescence Sensor Coating System on a Rolls-Royce Viper Engine
,”
ASME
Paper No. GT2012-69779.
18.
Sollazzo
,
P.
,
Feist
,
J.
,
Berthier
,
S.
,
Charnley
,
B.
,
Wells
,
J.
, and
Heyes
,
A.
,
2013
, “
Application of a Production Line Phosphorescence Sensor Coating System on a Jet Engine for Surface Temperature Detection
,”
AIP Conf. Proc.
,
1552
(
15
), pp.
897
902
.
19.
Knappe
,
C.
,
Andersson
,
P.
,
Algotsson
,
M.
,
Richter
,
M.
,
Linden
,
J.
,
Alden
,
M.
,
Tuner
,
M.
, and
Johansson
,
B.
,
2011
, “
Laser-Induced Phosphorescence and the Impact of Phosphor Coating Thickness on Crank-Angle Resolved Cylinder Wall Temperatures
,”
SAE
Paper No. 2011-01-1292.
20.
Choy
,
K.
,
Feist
,
J.
,
Heyes
,
A.
, and
Su
,
B.
,
1999
, “
Eu-Doped Y2O3 Phosphor Films Produced by Electrostatic-Assisted Chemical Vapor Deposition
,”
J. Mater. Res.
,
14
(
7
), pp.
3111
3114
.
21.
Gentleman
,
M. M.
,
Eldridge
,
J. I.
,
Zhu
,
D. M.
,
Murphy
,
K. S.
, and
Clarke
,
D. R.
,
2006
, “
Non-Contact Sensing of TBC/BC Interface Temperature in a Thermal Gradient
,”
Surf. Coat. Technol.
,
201
(
7
), pp.
3937
3941
.
22.
Atakan
,
B.
, and
Roskosch
,
D.
,
2013
, “
Thermographic Phosphor Thermometry in Transient Combustion: A Theoretical Study of Heat Transfer and Accuracy
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3603
3610
.
23.
Pilgrim
,
C.
,
Feist
,
J.
, and
Heyes
,
A.
,
2013
, “
On the Effect of Temperature Gradients and Coating Translucence on the Accuracy of Phosphor Thermometry
,”
Meas. Sci. Technol.
,
24
(
10
), p.
105201
.
24.
Sollazzo
,
P. Y.
,
Pilgrim
,
C.
,
Feist
,
J. P.
, and
Nicholls
,
J. R.
, “
Operation of a Burner Rig for Thermal Gradient Cycling of Thermal Barrier Coatings
,”
ASME
Paper No. GT2014-26325.
25.
Hüfner
,
S.
,
1978
,
Optical Spectra of Transparent Rare Earth Compounds
,
Academic Press
,
New York
.
26.
Weber
,
M.
,
1968
, “
Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3
,”
Phys. Rev.
,
171
(
2
), pp.
283
291
.
27.
Khalid
,
A. H.
, and
Kontis
,
K.
,
2008
, “
Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications
,”
Sensors
,
8
(
9
), pp.
5673
5744
.
28.
Kerr
,
C.
, and
Ivey
,
P.
,
2002
, “
An Overview of the Measurement Errors Associated With Gas Turbine Aeroengine Pyrometer Systems
,”
Meas. Sci. Technol.
,
13
(
6
), p.
873
.
29.
Heitronics, 2006, “
Infrared Radiation Pyrometer KT15 II: Operating Instructions
,” Heitronics Infrarot Messtechnik GmbH, available at:
30.
Alaruri
,
S.
,
Bianchini
,
L.
, and
Brewington
,
A.
,
1998
, “
Effective Spectral Emissivity Measurements of Superalloys and YSZ Thermal Barrier Coating at High Temperatures Using a 1.6 μm Single Wavelength Pyrometer
,”
Opt. Lasers Eng.
,
30
(
1
), pp.
77
91
.
31.
Alaruri
,
S. D.
,
Bianchini
,
L.
, and
Brewington
,
A. J.
,
1998
, “
Emissivity Measurements for YSZ Thermal Barrier Coating at High Temperatures Using a 1.6-μm Single-Wavelength Pyrometer
,”
Opt. Eng.
,
37
(
2
), pp.
683
687
.
32.
Feist
,
J.
,
Nicholls
,
J.
,
Fraser
,
M.
, and
Heyes
,
A.
,
2007
, “
Measurement, Coating and Monitoring System and Method
,” WO Patent No. 2007023292A2.
33.
Romani
,
L.
,
Ferrari
,
L.
,
Ferrara
,
G.
, and
Carnevale
,
E. A.
,
2014
, “
Pyrometric Estimation of Exhaust Valve Temperature of an Internal Combustion Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041507
.
34.
Feist
,
J. P.
,
Heyes
,
A. L.
,
Choy
,
K. L.
, and
Su
,
B.
,
1999
,
Phosphor Thermometry for High Temperature Gas Turbine Applications
,
Institute of Electrical and Electronics Engineers
,
New York
.
35.
Brubach
,
J.
,
Janicka
,
J.
, and
Dreizler
,
A.
,
2009
, “
An Algorithm for the Characterisation of Multi-Exponential Decay Curves
,”
Opt. Lasers Eng.
,
47
(
1
), pp.
75
79
.
36.
Shionoya
,
S.
, and
Yen
,
W. M.
,
2007
,
Phosphor Handbook
,
CRC Press
,
Boca Raton, FL
, p.
923
.
37.
Feist
,
J. P.
, and
Heyes
,
A. L.
,
2009
, “
Photo-Stimulated Phosphorescence for Thermal Condition Monitoring and Nondestructive Evaluation in Thermal Barrier Coatings
,”
Heat Transfer Eng.
,
30
(
13
), pp.
1087
1095
.
38.
Nakazawa
,
E
.,
1979
, “
Charge Transfer Type Luminescence of Yb3+ Ions in RPO4 and R2O2S (R=Y, La, and Lu)
,”
J. Lumin.
,
18
(
1
), pp.
272
276
.
39.
Stuke
,
A.
,
Kassner
,
H.
,
Marqués
,
J. L.
,
Vassen
,
R.
,
Stöver
,
D.
, and
Carius
,
R.
,
2012
, “
Suspension and Air Plasma-Sprayed Ceramic Thermal Barrier Coatings with High Infrared Reflectance
,”
Int. J. Appl. Ceram. Technol.
,
9
(
3
), pp.
561
574
.
40.
Limarga
,
A. M.
, and
Clarke
,
D. R.
,
2009
, “
Characterization of Electron Beam Physical Vapor-Deposited Thermal Barrier Coatings Using Diffuse Optical Reflectance
,”
Int. J. Appl. Ceram. Technol.
,
6
(
3
), pp.
400
409
.
You do not currently have access to this content.