The unsteady flow physics due to interactions between a separated shear layer and film cooling jet apart from excitation of periodic passing wake are studied using large eddy simulation (LES). An aerofoil of constant thickness with rounded leading edge induced flow separation, while film cooling jets were injected normal to the crossflow a short distance downstream of the blend point. Wake data extracted from precursor LES of flow past a cylinder are used to replicate a moving bar that generates wakes in front of a cascade (in this case, an infinite row of the model aerofoils). This setup is a simplified representation of rotor-stator interaction in a film cooled gas turbine. The results of numerical simulation are presented to elucidate the formation, convection and breakdown of flow structures associated with the highly anisotropic flow involved in film cooling perturbed by convective wakes. The various vortical structures namely, horseshoe vortex, roller vortex, upright wake vortex, counter rotating vortex pair (CRVP), and downward spiral separation node (DSSN) vortex associated with film cooling are resolved. The effects of wake on the evolution of these structures are then discussed.

References

References
1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
(
1
), pp.
321
379
.10.1016/S0065-2717(08)70020-0
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
3.
Teng
,
S. D.
,
Sohn
,
K.
, and
Han
,
J. C.
,
2000
, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
(
2
), pp.
340
347
.10.1115/1.555457
4.
Heidmann
,
J. D.
,
Reshotko
,
E.
, and
Lucci
,
B. L.
,
2001
, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
123
(
2
), pp.
214
221
.10.1115/1.1354621
5.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.10.1115/1.2929110
6.
Walker
,
G. J.
,
1993
. “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines: A Discussion
,”
ASME J. Turbomach.
,
115
(
2
), pp.
207
217
.10.1115/1.2929223
7.
Halstead
,
D.
,
Wisler
,
D.
,
Okiishi
,
T.
,
Walker
,
G.
,
Hodson
,
H.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
,
119
(
1
), pp.
114
127
.10.1115/1.2841000
8.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. C.
, and
Durbin
,
P. A.
,
1999
. “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
,
398
(
1
), pp.
109
153
.10.1017/S0022112099006205
9.
Sarkar
,
S.
, and
Voke
,
P. R.
,
2006
, “
Large-Eddy Simulation of Unsteady Surface Pressure Over a Low-Pressure Turbine Blade Due to Interactions of Passing Wakes and Inflexional Boundary Layer
,”
ASME J. Turbomach.
,
128
(
2
), pp.
221
231
.10.1115/1.2137741
10.
Sarkar
,
S.
,
2007
, “
Effects of Passing Wakes on a Separating Boundary Layer Along a Low-Pressure Turbine Blade Through Large-Eddy Simulation
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
4
), pp.
551
564
.10.1243/09576509JPE400
11.
Sarkar
,
S.
,
2008
, “
Identification of Flow Structures on a LP Turbine Blade Due to Periodic Passing Wakes
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061103
.10.1115/1.2911682
12.
Stieger
,
R.
, and
Hodson
,
H.
,
2005
, “
The Transition Mechanism of Highly Loaded LP Turbine Blades
,” Rolls Royce PLC-Report-PNR No. 93000.
13.
Wissink
,
J. G.
,
2003
, “
DNS of Separating, Low Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
626
635
.10.1016/S0142-727X(03)00056-0
14.
Wissink
,
J. G.
,
Rodi
,
W.
, and
Hodson
,
H. P.
,
2006
, “
The Influence of Disturbances Carried by Periodically Incoming Wakes on the Separating Flow Around a Turbine Blade
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
721
729
.10.1016/j.ijheatfluidflow.2006.02.016
15.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.10.1017/S0022112096001255
16.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.10.1017/S0022112097007891
17.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
18.
Krothapalli
,
A.
,
Lourenco
,
L.
, and
Buchlin
,
J. M.
,
1990
, “
Separated Flow Upstream of a Jet in a Crossflow
,”
AIAA J.
,
28
(
3
), pp.
414
420
.10.2514/3.10408
19.
Arts
,
T.
, and
Lapidus
,
I.
,
1993
, “
Thermal Effects of a Coolant Film Along the Suction Side of a High Pressure Turbine Nozzle Guide Vane
,” Propulsion and Energetics Panel 80th Symposium, Antalya, Turkey, Oct. 12–16, Heat Transfer and Cooling in Gas Turbines (AGARD-CP-527), pp. 3-1–3-8.
20.
Camci
,
C.
, and
Arts
,
T.
,
1985
, “
Short-Duration Measurements and Numerical Simulation of Heat Transfer Along the Suction Side of a Film-Cooled Gas Turbine Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
991
997
.10.1115/1.3239846
21.
Takeishi
,
K.
,
Tsukagoshi
,
K.
,
Aoki
,
S.
, and
Sato
,
T.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
.10.1115/1.2928036
22.
Han
,
J.-C.
,
2006
, “
Turbine Blade Cooling Studies at Texas A&M University: 1980–2004
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
161
187
.10.2514/1.15403
23.
Abhari
,
R. S.
, and
Epstein
,
A. H.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
(
1
), pp.
63
70
.10.1115/1.2928279
24.
Ou
,
S.
,
Lee
,
C. P.
,
Han
,
J. C.
, and
Mehendale
,
A. B.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I—Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
,
116
(
4
), pp.
721
729
.10.1115/1.2929465
25.
Funazaki
,
K.
,
Yamawaki
,
S.
, and
Yokota
,
M.
,
1997
, “
Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
,
119
(
2
), pp.
292
301
.10.1115/1.2841112
26.
Funazaki
,
K.
,
Koyabu
,
E.
, and
Yamawaki
,
S.
,
1998
, “
Effect of Periodic Wake Passing on Film Effectiveness of Inclined Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
,
120
(
1
), pp.
70
78
.10.1115/1.2841391
27.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
,
1998
, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
120
(
4
), pp.
808
817
.10.1115/1.2841793
28.
Womack
,
K. M.
,
Volino
,
R. J.
, and
Schultz
,
M. P.
,
2008
, “
Measurements in Film Cooling Flows With Periodic Wakes
,”
ASME J. Turbomach.
,
130
(
4
), p. 041008.10.1115/1.2812334
29.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A: Fluid Dyn.
,
3
(7), pp.
1760
1765
.10.1063/1.857955
30.
Lilly
,
D.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(3), pp.
633
635
.10.1063/1.858280
31.
Mittal
,
R.
, and
Moin
,
P.
,
1997
, “
Suitability of Upwind Biased Finite Difference Schemes for Large-Eddy Simulation of Turbulent Flows
,”
AIAA J.
,
35
(
8
), pp.
1415
1417
.10.2514/2.253
32.
Morinishi
,
Y.
,
Lund
,
T.
,
Vasilyev
,
O.
, and
Moin
,
P.
,
1998
, “
Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow
,”
J. Comput. Phys.
,
143
(
1
), pp.
90
124
.10.1006/jcph.1998.5962
33.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
34.
Fadlun
,
E.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
(
1
), pp.
35
60
.10.1006/jcph.2000.6484
35.
Kim
,
J.
, and
Choi
,
H.
,
2004
, “
An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries
,”
KSME Int. J.
,
18
(
6
), pp.
1026
1035
.10.1007/BF02990875
36.
Sarkar
,
S.
, and
Sarkar
,
S.
,
2009
. “
Large-Eddy Simulation of Wake and Boundary Layer Interactions Behind a Circular Cylinder
,”
ASME J. Fluids Eng.
,
131
(
9
), p.
091201
.10.1115/1.3176982
37.
Orlanski
,
I.
,
1976
, “
A Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
,
21
(
3
), pp.
251
269
.10.1016/0021-9991(76)90023-1
38.
Arts
,
T.
,
Lambert de Rouvroit
,
M.
, and
Rutherford
,
A. W.
,
1990
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,” von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium, Technical Report No. 174.
39.
Holland
,
R.
, and
Evans
,
R.
,
1996
, “
The Effects of Periodic Wake Structures on Turbulent Boundary Layers
,”
J. Fluids Struct.
,
10
(
3
), pp.
269
280
.10.1006/jfls.1996.0016
40.
Ovchinnikov
,
V.
,
Piomelli
,
U.
, and
Choudhari
,
M. M.
,
2006
, “
Numerical Simulations of Boundary-Layer Transition Induced by a Cylinder Wake
,”
J. Fluid Mech.
,
547
, pp.
413
441
.10.1017/S0022112005007342
41.
Yang
,
Z. Y.
, and
Voke
,
P. R.
,
2001
, “
Large-Eddy Simulation of Boundary Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.10.1017/S0022112001004633
42.
Yuen
,
C.
, and
Martinez-Botas
,
R.
,
2003
, “
Film Cooling Characteristics of a Single Round Hole at Various Streamwise Angles in a Crossflow: Part I Effectiveness
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
221
235
.10.1016/S0017-9310(02)00274-0
43.
Harish
,
B.
, and
Sarkar
,
S.
,
2012
, “
Study of Inlet Perturbations on Excitation of a Laminar Separation Bubble Through LES
,” 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2012), Malta, July 16–18, pp. 604-612.
44.
Tafti
,
D. K.
, and
Vanka
,
S. P.
,
1991
, “
A Three-Dimensional Numerical Study of Flow Separation and Reattachment on a Blunt Plate
,”
Phys. Fluids A
,
3
(
12
), pp.
2887
2909
.10.1063/1.858208
45.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
(
1
), pp.
93
127
.10.1017/S0022112084000057
46.
Andreopoulos
,
J.
,
1985
, “
On the Structure of Jets in a Crossflow
,”
J. Fluid Mech.
,
157
(
1
), pp.
163
197
.10.1017/S0022112085002348
47.
Yuan
,
L. L.
,
Street
,
R. L.
, and
Ferziger
,
J. H.
,
1999
, “
Large Eddy Simulations of a Round Jet in Crossflow
,”
J. Fluid Mech.
,
379
(
1
), pp.
71
104
.10.1017/S0022112098003346
48.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
,
2004
. “
Evolution of Jets Emanating From Short Holes Into Crossflow
,”
J. Fluid Mech.
,
503
, pp.
57
91
.10.1017/S0022112003007407
49.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), pp.
734
742
.10.1115/1.1625397
50.
Hale
,
C.
,
Plesniak
,
M.
, and
Ramadhyani
,
S.
,
2000
, “
Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum
,”
ASME J. Turbomach.
,
122
(
3
), pp.
553
557
.10.1115/1.1303705
51.
Meyer
,
R.
,
1958
, “
The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines
,”
ASME J. Basic Eng.
,
80
(
7
), pp.
1544
1552
.
You do not currently have access to this content.