A robust mixing plane method satisfying interface flux conservation, nonreflectivity and retaining interface flow variation; valid at all Mach numbers and applicable for any machine configuration is formulated and implemented in a vertex based finite volume solver for flow analysis and inverse design. The formulation is based on superposing perturbed flow variables derived from the three-dimensional (3D) characteristics obtained along the flow direction on the exchanged mixed out averaged quantities. The method is extended for low speed applications using low Mach number preconditioning. Subsequently, inverse design runs over a single stage transonic low pressure (LP) turbine configuration conducted at a fixed mass flow boundary condition and spanwise loading condition similar to the baseline generates optimized configurations providing performance improvement while achieving prespecified target meridional load distribution.

References

References
1.
Giles
,
M.
,
1988
, “
Non-Reflecting Boundary Conditions for the Euler Equations
,” MIT Department of Aeronautics and Astronautics, Cambridge, MA, Paper No. CFDL-TR-88-1.
2.
Denton
,
J.
, and
Singh
,
U.
,
1979
,
Time Marching Methods for Turbomachinery Flow Calculation
,
von Karman Institute
,
Sint-Genesius-Rode, Belgium
.
3.
Holmes
,
D. G.
,
2008
, “
Mixing Plane Revisited: A Steady State Mixing Plane Approach Designed to Combine High Levels of Conservation and Robustness
,” ASME Turbo Expo, Berlin, Germany, June 9–13,
ASME
Paper No. GT2008-51296.10.1115/GT2008-51296
4.
Hanimann
,
L.
,
Mangani
,
L.
,
Casartelli
,
E.
,
Mokulys
,
T.
, and
Mauri
,
S.
,
2013
, “
Development of a Novel Mixing Plane Interface Using a Fully Implicit Averaging for Stage Analysis
,” ASME Turbo Expo, San Antonio, TX, June 3–7,
ASME
Paper No. GT2013-94390.10.1115/GT2013-94390
5.
Moraga
,
F.
,
Vysohild
,
M.
,
Smelova
,
N.
,
Mistry
,
H.
,
Atheya
,
S.
, and
Kanakala
,
V.
,
2012
, “
A Flux-Conservation Mixing Plane Algorithm for Multiphase Non-Equilibrium Steam Models
,” ASME Turbo Expo, Copenhagen, Denmark, June 11–15,
ASME
Paper No. GT2012-68660.10.1115/GT2012-68660
6.
Saxer
,
A.
, and
Giles
,
M.
,
1991
, “
Quasi-Three-Dimensional Nonreflecting Boundary Conditions for Euler Equations Calculations
,”
J. Propul. Power
,
9
(
2
), pp.
263
271
.10.2514/3.23618
7.
Anker
,
J.
,
Schrader
,
B.
,
Seybold
,
U.
,
Mayer
,
J.
, and
Casey
,
M.
,
2006
, “
A Three-Dimensional Non-Reflecting Boundary Condition Treatment for Steady-State Flow Simulations
,”
AIAA
Paper No. 2006-1275.10.2514/6.2006-1275
8.
Páscoa
,
J. C.
,
Xisto
,
C. M.
, and
Göttlich
,
E.
,
2010
, “
Performance Assessment Limits in Transonic 3D Turbine Stage Blade Rows Using a Mixing-Plane Approach
,”
J. Mech. Sci. Technol.
,
24
(
10
), pp.
2035
2042
.10.1007/s12206-010-0713-9
9.
Tiow
,
W. T.
, and
Zangeneh
,
M.
,
2002
, “
A Novel 3D Inverse Method for the Design of Turbomachinery Blades in Rotational Viscous Flow: Theory and Applications
,”
Task Q.
,
6
(
1
), pp.
63
78
.
10.
Tiow
,
W. T.
, and
Zangeneh
,
M.
,
2002
, “
Application of a Three Dimensional Viscous Transonic Inverse Method to NASA Rotor 67
,”
J. Power Energy
,
216
(
A3
), pp.
243
255
.10.1243/095765002320183568
11.
TURBOdesign Suite,
2013
, TURBOdesign2, Version 5.2.1, Advanced Design Technology Ltd, London.
12.
Demeulenaere
,
A.
, and
Van den Braembussche
,
R.
,
1996
, “
Three-Dimensional Inverse Method for Turbomachinery Blading Design
,” ASME 41th International Gas Turbine Conference and Exhibit, Birmingham, UK, June 10–13, ASME Paper No. 96-GT-39.10.1115/96-GT-39
13.
Rooij
,
M.
, and
Medd
,
A.
,
2012
, “
Reformulation of a Three-Dimensional Inverse Design Method for Application in a High-Fidelity CFD Environment
,” ASME Turbo Expo, Copenhagen, Denmark, June 11–15,
ASME
Paper No. GT2012-69891.10.1115/GT2012-69891
14.
Arbabi
,
A.
, and
Ghaly
,
W.
,
2013
, “
Inverse Design of Turbine and Compressor Stages Using a Commercial CFD Program
,” ASME Turbo Expo, San Antonio, TX, June 3–7,
ASME
Paper No. GT2013-96017.10.1115/GT2013-96017
15.
Page
,
J. H.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2013
, “
Inverse Design of 3D Multi-Stage Transonic Fans at Dual Operating Points
,” ASME Turbo Expo, San Antonio, TX, June 3–7,
ASME
Paper No. GT2013-95062.10.1115/GT2013-95062
16.
Weiss
,
J.
, and
Smith
,
W.
,
1995
, “
Preconditioning Applied to Variable and Constant Density Flows
,”
AIAA J.
,
33
(
11
), pp.
2050
2057
.10.2514/3.12946
17.
Darmofal
,
D.
, and
Siu
,
K.
,
1999
, “
A Robust Multigrid Algorithm for the Euler Equations With Local Preconditioning and Semi-Coarsening
,”
J. Comput. Phys.
,
151
(
2
), pp.
728
756
.10.1006/jcph.1999.6216
18.
Hall
,
M. G.
,
1985
, “
Cell-Vertex Multigrid Schemes for Solution of the Euler Equations
,”
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
, and
M. J.
Baines
, eds.,
Clarendon Press, Oxford
,
UK
.
19.
Tiow
,
W. T.
,
2000
, “
Inverse Design of Turbomachinery Blades in Rotational Flow
,” PhD thesis, University College, University of London, London.
20.
Denton
,
J.
,
1986
, “
The Use of a Distributed Body Force to Simulate Viscous Effects in 3D Flow Calculations
,” ASME 31st International Gas Turbine Conference and Exhibit, Düsseldorf, Germany, June 8–12, ASME Paper No. 86-GT-144.10.1115/86-GT-144
21.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time Stepping Schemes
,”
AIAA
Paper No. 81-1259.10.2514/6.81-1259
22.
Swanson
,
R. C.
,
Radespiel
,
R.
, and
Turkel
,
E.
,
1998
, “
On Some Numerical Dissipation Schemes
,”
J. Comput. Phys.
,
147
(
2
), pp.
518
544
.10.1006/jcph.1998.6100
23.
Chima
,
R. V.
,
1998
, “
Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions
,”
AIAA
Paper No. 98-0968.10.2514/6.98-0968
24.
TURBOdesign Suite
2013
, Turbodesign CFD 5.2.0,
Advanced Design Technology
,
London
.
25.
ANSYS, 2011, ANSYS CFX 14.0, ANSYS Inc., Canonsburg, PA.
You do not currently have access to this content.