The current capabilities of the foundry industry allow the production of integrally cast turbine airfoils. Impingement cooling effectiveness can be then further increased due to the manufacturing feasibility of narrow impingement cavities in a double-wall configuration. This study examines experimentally, using the transient liquid crystal technique, the cooling performance of narrow cavities consisting of a single row of five impingement holes. Heat transfer coefficient distributions are obtained for all channel interior surfaces over a range of engine realistic Reynolds numbers varying between 10,900 and 85,900. Effects of streamwise jet-to-jet spacing (X/D), channel width (Y/D), jet-to-target plate distance (Z/D), and jet offset position (Δy∕D) from the channel centerline are investigated composing a test matrix of 22 different geometries. Additionally, the target plate and sidewalls heat transfer rates are successfully correlated within the experimental uncertainties providing an empirical heat transfer model for narrow impingement channels. The results indicate similarities with multijet impingement configurations; however, the achievable heat transfer level is about 20% lower compared to periodic multijet impingement correlations found in open literature.

References

References
1.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
487
494
.10.1115/1.1373398
2.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.10.1115/1.2464142
3.
Lutum
,
E.
,
Semmler
,
K.
, and
von Wolfersdorf
,
J.
,
2002
, “
Cooled Blade for a Gas Turbine
,” US Patent 6,379,118 B2.
4.
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2010
, “
Turbine Airfoil Aerothermal Characteristics in Future Coal–Gas-Based Power Generation Systems
,”
Heat Transfer Res.
,
41
(
7
), pp.
737
752
.10.1615/HeatTransRes.v41.i7.40
5.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C.-P.
, and
Stevens
,
C. W.
,
2004
, “
In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils
,”
ASME
Paper No. GT2004-54260.10.1115/GT2004-54260
6.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
(
3
), pp.
1
32
.10.1155/2013/275653
7.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
,
120
(
1
), pp.
92
99
.10.1115/1.2841394
8.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2005
, “
The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
358
365
.10.1115/1.1800493
9.
Terzis
,
A.
,
Wagner
,
G.
,
von Wolfersdorf
,
J.
,
Ott
,
P.
, and
Weigand
,
B.
,
2014
, “
Effect of Hole Staggering on The Cooling Performance of Narrow Impingement Channels Using The Transient Liquid Crystal Technique
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071701
.10.1115/1.4027250
10.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
11.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Kingston
,
R.
,
2010
, “
Enhancement of Impingement Cooling in a High Cross Flow Channel Using Shaped Impingement Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021001
.10.1115/1.3140282
12.
Uysal
,
U.
,
Li
,
P. W.
,
Chyu
,
M. K.
, and
Cunha
,
F. J.
,
2006
, “
Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array With Varying Jet Hole-Size and Spacing
,”
ASME J. Turbomach.
,
128
(
1
), pp.
158
165
.10.1115/1.2101859
13.
Miller
,
N.
,
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “
Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets
,”
ASME
Paper No. GT2013-95400.10.1115/GT2013-95400
14.
Ricklick
,
M.
,
Kapat
,
J. S.
, and
Heidmann
,
J.
,
2010
, “
Sidewall Effects on Heat Transfer Coefficient in a Narrow Impingement Channel
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
123
132
.10.2514/1.44166
15.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2012
, “
Effects of Rotation on Heat Transfer for a Single Row Jet Impingement Array With Crossflow
,”
ASME J. Heat Transfer
,
134
(
8
), p.
082202
.10.1115/1.4006167
16.
Stoakes
,
P.
, and
Ekkad
,
S. V.
,
2011
, “
Optimized Impingement Configurations for Double Wall Cooling Applications
,”
ASME
Paper No. GT2011-46143.10.1115/GT2011-46143
17.
Fechter
,
S.
,
Terzis
,
A.
,
Ott
,
P.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Cochet
,
M.
, 2013, “Experimental and Numerical Investigation of Narrow Impingement Cooling Channels,”
Int. J. Heat Mass Trans.
,
7
(9), pp.
1208
1219
.10.1016/j.ijheatmasstransfer.2013.09.003
18.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092201
.10.1115/1.4001633
19.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
,
129
(
2
), pp.
269
280
.10.1115/1.2437774
20.
Poser
,
R.
, and
von Wolfersdorf
,
J.
,
2011
, “
Liquid Crystal Thermography for Transient Heat Transfer Measurements in Complex Internal Cooling Systems
,”
Heat Transfer Res.
,
42
(
2
), pp.
181
197
.10.1615/HeatTransRes.v42.i2.60
21.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
Meas. Sci. Technol.
,
23
(
11
), p.
115303
.10.1088/0957-0233/23/11/115303
22.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Michael Owen
,
J.
,
2005
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
256
263
.10.1016/j.ijheatfluidflow.2004.08.011
23.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
24.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.10.1016/S0142-727X(01)00125-4
25.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
26.
Caggese
,
O.
,
Gnaegi
,
G.
,
Hannema
,
G.
,
Terzis
,
A.
, and
Ott
,
P.
, 2013, “Experimental and Numerical Investigation of a Fully Confined Impingement Round Jet,”
Int. J. Heat Mass Trans.
,
65
(6), pp.
873
883
.10.1016/j.ijheatmasstransfer.2013.06.043
27.
Bouchez
,
J. P.
, and
Goldstein
,
R. J.
,
1975
, “
Impingement Cooling From a Circular Jet in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
18
(
6
), pp.
719
730
.10.1016/0017-9310(75)90201-X
28.
Hollworth
,
B. R.
, and
Berry
,
R. D.
,
1978
, “
Heat Transfer From Arrays of Impinging Jets With Large Jet-to-Jet Spacing
,”
ASME J. Heat Transfer
,
100
(
2
), pp.
352
357
.10.1115/1.3450808
29.
Andrews
,
G. E.
,
Durance
,
J.
,
Hussain
,
C. I.
, and
Ojobor
,
S. N.
,
1987
, “
Full Coverage Impingement Heat Transfer: Influence of the Number of Holes
,”
ASME J. Turbomach.
,
109
(
4
), pp.
557
563
.10.1115/1.3262148
30.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Gas Turbines Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
31.
Chance
,
L. J.
,
1974
, “
Experimental Investigation of Air Impingement Heat Transfer Under an Array of Round Jets
,”
TAPPI
,
57
(
6
), pp.
108
112
.
32.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2002
, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,”
ASME
Paper No. GT2002-30473.10.1115/GT2002-30473
You do not currently have access to this content.