In modern low pressure turbines the efforts to increase aerodynamic blade loading by increasing blade pitch and optimizing midspan performance in order to reduce weight and complexity can produce increased losses in the endwall region. Airfoils of high flow turning and high pressure gradients between the blades generate strong secondary flows which impair the global aerodynamic performance of the blades. In addition, the unsteady incoming wakes take influence on transition phenomena on the blade surfaces and the inlet boundary layer, and consequently affect the development and the evolution of the secondary flows. In this paper, the T106 cascade is used to identify the effect of unsteady wakes on the development of secondary flows in a turbine cascade. Numerical and experimental results are compared at different flux coefficients and Strouhal numbers, the relative differences and similarities are analyzed.

References

References
1.
Reising
,
S.
, and
Schiffer
,
H.-P.
,
2009
, “
Non-Axisymmetric End Wall Profiling in Transonic Compressors—Part II: Design Study of a Transonic Compressor Rotor Using Non-Axisymmetric End Walls: Optimization Strategies and Performance
,”
ASME
Paper No. GT2009-59134
10.1115/GT2009-59134.
2.
Moore
,
J.
, and
Adhye
,
R. Y.
,
1985
, “
Secondary Flows and Losses Downstream of a Turbine Cascade
,” ASME Paper No. 85-GT-64.
3.
Sieverding
,
C. H.
,
1984
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,” ASME Paper No. 84-GT-78.
4.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1976
, “
Three Dimensional Flow Within a Turbine Cascade Passage
,” ASME Paper No. 76-GT-50.
5.
Denton
,
J.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME
Paper No. GT2012-69173
10.1115/GT2012-69173.
6.
de la Rosa Blanco
,
E.
,
Hodson
,
H. P.
,
Vazquez
,
R.
, and
Torre
,
D.
,
2003
, “
Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between Pressure Surface Separation and Endwall Flows
,”
Proc. Inst. Mech. Eng., Part A
,
217
(
4
), pp.
433
441
.10.1243/095765003322315496
7.
Maria
,
V.
,
de la Rosa Blanco
,
E.
,
Howard
,
H.
, and
Raul
,
V.
,
2007
, “
Endwall Boundary Layer Development in an Engine Representative Four-Stage Low Pressure Turbine Rig
,”
ASME
Paper No. GT2007-27842
.10.1115/GT2007-27842
8.
Moore
,
H.
, and
Gregory-Smith
,
D. G.
,
1996
, “
Transition Effects on Secondary Flows in a Turbine Cascade
,” ASME Paper No. 96-GT-100.
9.
Duden
,
A.
,
1999
, “
Strömungsbeeinflussung zur Reduzierung der Sekundärströmungen in Turbinengittern
,” Ph.D. thesis, Universität der Bundeswehr München, München, Germany.
10.
Volino
,
R. J.
,
2012
, “
Effect of Unsteady Wakes on Boundary Layer Separation on a Very High Lift Low Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
134
(
1
), p.
011011
.10.1115/1.4003232
11.
Acton
,
P.
,
1998
, “
Untersuchungen des Grenzschichtumschlages an einem hochbelasteten Turbinengitter unter inhomogenen und instationären Zuströmbedingungen
,” Ph.D. thesis, Universität der Bundeswehr München, München, Germany.
12.
Stadtmüller
,
P.
,
2002
, “
Grenzschichtentwicklung und Verlustverhalten von hochbelasteten Turbinengittern unter Einfluß periodisch instationärer Zuströmung
,” Ph.D. thesis, Universität der Bundeswehr München, München, Germany.
13.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerfoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
37
, pp.
71
98
.10.1146/annurev.fluid.37.061903.175511
14.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D. E.
,
2003
, “
On the Physics of the Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
,”
ASME
Paper No. GT2003-38917
10.115/GT2003-38917.
15.
Schobeiri
,
M. T.
, and
Öztürk
,
B.
,
2004
, “
Experimental Study of the Effect of Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Re-Attachment Along the Surface of a Low Pressure Turbine Blade
,”
ASME
Paper No. GT2004-53929
10.1115/GT2004-53929.
16.
Ibrahim
,
M. B.
,
Vinci
,
S.
,
Kartuzova
,
O.
, and
Volino
,
R. J.
,
2012
, “
CFD Simulations of Unsteady Wakes on a Highly Loaded Low Pressure Turbine Airfoil (L1A)
,”
ASME
Paper No. GT2012-69770
10.1115/GT2012-69770.
17.
Nessler
,
C. A.
,
Marks
,
C.
,
Sondergaard
,
R.
,
Wolff
,
M.
,
Sanders
,
D. D.
,
O'Brien
,
W. F.
, and
Polanka
,
M. D.
,
2010
, “
A CFD and Experimental Investigation of Unsteady Wake Effects on a Highly Loaded Low Pressure Turbine Blade at Low Reynolds Number
,”
ASME
Paper No. GT2010-22977
10.1115/GT2010-22977.
18.
Schwarze
,
M.
, and
Niehuis
,
R.
,
2010
, “
Numerical Simulation of a Highly Loaded LPT Cascade With Strong Suction Side Separation Under Periodically Unsteady Inflow Conditions
,”
ASME
Paper No. GT2010-22363
10.1115/GT2010-22363.
19.
Funazaki
,
K.
,
Sasaki
,
Y.
, and
Tanuma
,
T.
,
1997
, “
Experimental Studies on Unsteady Aerodynamic Loss of a High-Pressure Turbine Cascade
,” ASME Paper No. 97-GT-52.
20.
Lei
,
Q.
,
Zhengping
,
Z.
,
Huoxing
,
L.
, and
Wei
,
L.
,
2010
, “
Upstream Wake-Secondary Flow Interactions in the Endwall Region of High-Loaded Turbines
,”
J. Comput. Fluids
,
39
(
9
), pp.
1575
1584
.10.1016/j.compfluid.2010.05.010
21.
Chaluvadi
,
V. S. P.
,
Kalfas
,
A. I.
,
Banieghbal
,
M. R.
,
Hodson
,
H. P.
, and
Denton
,
J. D. L.
,
2001
, “
Blade-Row Interaction in a High-Pressure Turbine
,”
J. Propul. Power
,
17
(
4
), pp.
892
901
.10.2514/2.5821
22.
Pullan
,
G.
,
2004
, “
Secondary Flows and Loss Caused by Blade Row Interaction in a Turbine Stage
,”
ASME
Paper No. GT2004-53743
10.1115/GT2004-53743.
23.
Sturm
,
W.
, and
Fottner
,
L.
,
1985
, “
The High-Speed Cascade Wind Tunnel of the German Armed Forces University Munich
,”
8th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines
, Genoa, Italy, October 24–25.
24.
Hoheisel
,
H.
,
Kiock
,
R.
,
Lichtfuß
,
H. J.
, and
Fottner
,
L.
,
1986
, “
Influence of Free Stream Turbulence and Blade Pressure Gradient on Boundary Layer and Loss Behaviour of Turbine Cascades
,” ASME Paper No. 86-GT-234.
25.
Acton
,
P.
, and
Fottner
,
L.
,
1997
, “
Investigation of the Boundary Layer Development on a Highly Loaded Low Pressure Turbine Cascade Under the Influence of Unsteady Flow Conditions
,”
8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines (ISUAAT), Stockholm, Sweden, September 14–18
, pp.
393
406
.
26.
Acton
,
P.
, and
Fottner
,
L.
,
1996
, “
The Generation of Instationary Flow Conditions in the High-Speed Cascade Wind Tunnel of the German Armed Forces University Munich
,”
13th Symposium on Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbomachine
, Zurich, Switzerland, September 5–6.
27.
Ganzert
,
W.
, and
Fottner
,
L.
,
1996
, “
Winpanda—An Enhanced PC-Based Data Acquisition System for Wake and Profile Pressure Distribution Measurements at the High-Speed Cascade Wind Tunnel
,”
13th Symposium on Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbomachine
, Zurich, Switzerland, September 5–6.
28.
Wolff
,
S.
,
Brunner
,
S.
, and
Fottner
,
L.
,
2000
, “
The Use of Hot-Wire Anemometry to Investigate Unsteady Wake-Induced Boundary-Layer Development on a High-Lift LP Turbine Cascade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
644
650
.10.1115/1.1311282
29.
Gomes
,
R.
, and
Araujo
,
M. B.
,
2010
, “
On Aerothermal Effects of Film Cooling on Turbine Blades with Flow Separation
,” Ph.D. thesis, Universität der Bundeswehr München, München, Germany.
30.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Turbulent Shear Flow Symposium
, Kyoto, Japan, August 16–18.
31.
Kozulovic
,
D.
,
Röber
,
T.
,
Kügeler
,
E.
, and
Nürnberger
,
D.
,
2004
, “
Modifications of a Two-Equation Turbulence Model for Turbomachinery Fluid Flows
,” Deutscher Luft- und Raumfahrtkongress, Dresden, Germany.
32.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables: Part I—Model Formulation
,”
ASME
Paper No. GT2004-5345210.1115/GT2004-53452.
33.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables: Part II—Test Cases and Industrial Applications
,”
ASME
Paper No. GT2004-5345410.1115/GT2004-53454.
34.
Engel
,
K.
,
1997
, “
Numerische Simulation der instationären Strömung in Turbomaschinenkomponenten
,” Ph.D. thesis, Universität Gesamthochschule Essen, Essen, Germany.
35.
Eulitz
,
F.
,
2000
, “
Numerische Simulation und Modellierung der instationären Strömung in Turbomaschinen
,” Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany.
36.
Yang
,
H.
,
Kügeler
,
E.
, and
Weber
,
A.
,
2002
, “
Conservative Zonal Approach With Applications to Unsteady Turbomachinery Flows
,” DGLR Jahrestagung (DGLR-JT2002-073), Stuttgart, Germany.
37.
Yang
,
H.
,
Nürnberger
,
D.
, and
Kersken
,
H.-P.
,
2006
, “
Toward Excellence in Turbomachinery Computational Fluid Dynamics: A Hybrid Structured-Unstructured Reynolds-Averaged Navier-Stokes Solver
,”
ASME J. Turbomach.
,
128
(
2
), pp.
390
402
.10.1115/1.2162182
You do not currently have access to this content.