The impact of the purge flow injection on aerodynamics and film cooling effectiveness of a three-stage, high-pressure turbine with nonaxisymmetric end wall contouring has been experimentally investigated. As a continuation of the previously published work involving stator-rotor gap purge cooling, this study investigates film cooling effectiveness on the first-stage rotor contoured platform due to a coolant gas injection. Film cooling effectiveness measurements are performed on the rotor blade platform using a pressure-sensitive paint (PSP) technique. The present study examines, in particular, the film cooling effectiveness due to injection of coolant from the rotor cavity through the circumferential gap between the first stator followed by the first rotor. Effects of the presence of contouring, blowing ratios, rotational speeds, and coolant density ratio are studied and compared to a noncontouring platform. The experimental investigation is carried out in a three-stage turbine facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL) at Texas A&M University. Its rotor includes nonaxisymmetric end wall contouring on the first and second rotor row. The turbine has two independent cooling loops. Film cooling effectiveness measurements are performed for three coolant-to-mainstream mass flow ratios of 0.5%, 1.0%, and 1.5%. Film cooling data is obtained for three rotational speeds, 3000 rpm (reference condition), 2550 rpm, and 2400 rpm, and compared with noncontoured end wall data. Effect of density ratio for coolant-to-mainstream density ratio (DR) = 1.0 and DR = 1.5 is also investigated. The comparisons of film effectiveness results show that contoured cases have a noticeable quantitative improvement compared to those of noncontoured ones.

References

1.
Ahn
,
J. Y.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2007
, “
Effect of Rotation on Leading Edge Region Film Cooling of a Gas Turbine Blade With Three Rows of Film Cooling Holes
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
15
25
.10.1016/j.ijheatmasstransfer.2006.06.028
2.
Ahn
,
J. Y.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2006
, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Film-Cooled Blade Using Pressure Sensitive Paint
,”
ASME J. Heat Transfer
,
128
(9), pp.
879
888
.10.1115/1.2241945
3.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2004
, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Turbine Blade
,”
ASME
Paper No. IMECE2004-59852. 10.1115/IMECE2004-59852
4.
Suryanarayanan
,
A.
,
Özturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2010
, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
132
(
4
), p.
041001
.10.1115/1.3142860
5.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2009
, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
(
1
), p.
011014
.10.1115/1.2752184
6.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2009
, “
Influence of Rim Seal Purge Flow on Performance of an Endwall Profiled Axial Turbine
,
ASME
Paper No. GT2009-59653. 10.1115/GT2009-59653
7.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
, and
Gier
,
J.
,
2012
, “
A Low Pressure Turbine With Profiled End Walls and Purge Flow Operating With a Pressure Side Bubble
,”
ASME J. Turbomach.
,
134
(6), p.
061038
.10.1115/1.4006303
8.
Schobeiri
,
M. T.
, and
Lu
,
K.
, “
Endwall Contouring Using Continuous Diffusion, a Breakthrough Method and Its Application to a Three-Stage High Pressure Turbine
,”
ASME J. of Turbomach
,
136
(1) p.
011006
.10.1115/1.4023970
9.
Hartland
,
J.
, and
Gregory-Smith
,
D.
,
2002
, “
A Design Method for the Profiling of End Walls in Turbines
,”
ASME
Paper No. GT2002-30433. 10.1115/GT2002-30433
10.
Ingram
,
G.
,
Gregory-Smith
,
D. G.
,
Rose
,
M.
,
Harvey
,
N.
, and
Brennan
,
G.
,
2002
, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,”
ASME
Paper No. GT2002-30339. 10.1115/GT2002-30339
11.
Eymann
,
S.
,
Reinmöller
,
U.
, and
Niehuis
,
R.
,
2002
, “
Improving 3D Flow Characteristics in a Multistage LP Turbine by Means of Endwall Contouring and Airfoil Design Modification—Part 1: Design and Experimental Investigation
,”
ASME
Paper No. GT2002-30352. 10.1115/GT2002-30352
12.
Sauer
,
H.
,
Müller
,
R.
, and
Vogeler
,
K.
,
2000
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,”
ASME
Paper No. 2000-GT-0473.
13.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2001
, “
Improving The Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part 1 Turbine Design
,”
ASME
Paper No. 2001-GT-0444.
14.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Brennan
,
G.
, and
Newman
,
D. A.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
ASME
Paper No. GT2002-30337. 10.1115/GT2002-30337
15.
Germain
,
T.
,
Nagel
,
M.
,
Raab
, I
.
,
Schuepbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
,
2008
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric End Walls Part I: Endwall Design and Performance
,”
ASME
Paper No. GT2008-50469. 10.1115/GT2008-50469
16.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2009
, “
The Application of Non-Axisymmetric Endwall Contouring in a Single Stage, Rotating Turbine
,”
ASME
Paper No. GT2009-59169. 10.1115/GT2009-59169
17.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2010
, “
The Performance of a Generic Non-Axisymmetric End Wall in a Single Stage, Rotating Turbine at On and Off-Design Conditions
,”
ASME
Paper No. GT2010-22006. 10.1115/GT2010-22006
18.
Schobeiri
,
M. T.
,
2012
, “
Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection Under Rotating Turbine Conditions Advanced Turbine Program
,”
U.S. Department of Energy Quarterly Report 2012
, Period of Performance: May 01/2012 to July 31/2012.
19.
Schobeiri
,
M. T.
, and
Lu
,
K.
,
2011
, “
Numerical Investigation of the Effect of Purge Flow on Aerodynamic Performance and Film Cooling Effectiveness on a Rotating Turbine With Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2012-69069. 10.1115/GT2012-69069
20.
Schobeiri
,
M. T.
,
Gilarranz
,
J.
, and
Johansen
,
E.
,
1999
, “
Final Report on: Efficiency, Performance, and Interstage Flow Field Measurement of Siemens-Westinghouse HP-Turbine Blade Series 9600 and 5600
,” TPFL-Westinghouse Report 1997-1.
21.
Schobeiri
,
M. T.
,
Gilarranz
,
J. L.
, and
Johansen
,
E. S.
,
2000
, “
Aerodynamic and Performance Studies of a Three Stage High Pressure Research Turbine With 3-D Blades, Design Points and Off-Design Experimental Investigations
,” ASME Paper No. 2000-GT-484.
22.
Schobeiri
,
M. T.
,
Suryanarayanan
,
A.
,
Jermann
,
C.
, and
Neuenschwander
,
T.
,
2004
, “
A Comparative Aerodynamic and Performance Study of a Three-Stage High Pressure Turbine With 3-D Bowed Blades and Cylindrical Blades
,”
ASME
Paper No. GT2004-53650. 10.1115/GT2004-53650
23.
Schobeiri
,
M. T.
,
1989
, “
Optimum Trailing Edge Ejection for Cooled Gas Turbine Blades
,”
ASME J. Turbomach.
,
111
(
4
), pp.
510
514
.10.1115/1.3262301
24.
Schobeiri
,
M. T.
, and
Pappu
,
K.
,
1999
, “
Optimization of Trailing Edge Ejection Mixing Losses Downstream of Cooled Turbine Blades: A Theoretical and Experimental Study
,”
ASME J. Fluids Eng.
,
121
(1), pp.
118
125
.10.1115/1.2821991
25.
McLachlan
,
B.
, and
Bell
,
J.
,
1995
, “
Pressure-Sensitive Paint in Aerodynamic Testing
,”
Exp. Therm. Fluid Sci.
,
10
(4), pp.
470
485
.10.1016/0894-1777(94)00123-P
26.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
,
2005
, “
Assessment of Steady State PSP, TSP and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME
Paper No. HT2005-72363. 10.1115/HT2005-72363
27.
Rallabandi
,
A. P.
,
Grizzle
,
J.
, and
Han
,
J. C.
,
2011
, “
Effect of Upstream Step on Flat Plate Film Cooling Effectiveness Using PSP
,”
ASME J. Turbomach.
,
133
(4), p.
041024
.10.1115/1.4002422
28.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
29.
Holman
,
J. P.
,
2000
,
Experimental Methods for Engineers
,
McGraw-Hill
,
New York
.
30.
Narzary
,
D. P.
,
Liu
,
K. C.
, and
Han
,
J. C.
,
2009
, “
Influence of Coolant Density on Turbine Blade Platform Film-Cooling
,”
ASME
Paper No. GT2009-59342. 10.1115/GT2009-59342
You do not currently have access to this content.