This paper investigates the design of winglet tips for unshrouded high pressure turbine rotors considering aerodynamic and thermal performance simultaneously. A novel parameterization method has been developed to alter the tip geometry of a rotor blade. A design survey of uncooled, flat-tipped winglets is performed using Reynolds-averaged Navier–Stokes (RANS) calculations for a single rotor at engine representative operating conditions. Compared to a plain tip, large efficiency gains can be realized by employing an overhang around the full perimeter of the blade, but the overall heat load rises significantly. By employing an overhang on only the early suction surface, significant efficiency improvements can be obtained without increasing the overall heat transfer to the blade. The flow physics are explored in detail to explain the results. For a plain tip, the leakage and passage vortices interact to create a three-dimensional impingement onto the blade suction surface, causing high heat transfer. The addition of an overhang on the early suction surface displaces the tip leakage vortex away from the blade, weakening the impingement effect and reducing the heat transfer on the blade. The winglets reduce the aerodynamic losses by unloading the tip section, reducing the leakage flow rate, turning the leakage flow in a more streamwise direction, and reducing the interaction between the leakage fluid and end wall flows. Generally, these effects are most effective close to the leading edge of the tip where the leakage flow is subsonic.

References

References
1.
Bunker
,
R. S.
,
2004
, “
Blade Tip Heat Transfer and Cooling Techniques
,”
Turbine Blade Tip Design and Tip Clearance Treatment
(VKI Lecture Series 2004-02),
von Karman Institute
,
Sint-Genesius-Rode, Belgium
.
2.
Harvey
,
N. W.
,
2004
, “
Aerothermal Implications of Shroudless and Shrouded Blades
,”
Turbine Blade Tip Design and Tip Clearance Treatment
(VKI Lecture Series 2004-02),
von Karman Institute
,
Sint-Genesius-Rode, Belgium
.
3.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhry
,
U.
,
1989
, “
Flow and Heat Transfer in Turbine Tip Gaps
,”
ASME J. Turbomach.
,
111
(
3
), pp.
301
309
.10.1115/1.3262269
4.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.10.1115/1.4002424
5.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.10.2514/1.B34112
6.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
100
(
1
), pp.
18
26
.10.1115/1.3262162
7.
Heyes
,
F. J. G.
, and
Hodson
,
H. P.
,
1993
, “
Measurement and Prediction of Tip Clearance Flow in Linear Cascades
,”
ASME J. Turbomach.
,
115
(
2
), pp.
376
382
.10.1115/1.2929264
8.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
115
(
4
), pp.
621
655
.10.1115/1.2929299
9.
Huang
,
A. C.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
,
Clemens
,
E. F.
,
Gegg
,
S. G.
, and
Turner
,
E. R.
,
2012
, “
Blade Loading Effects on Axial Turbine Tip Leakage Vortex Dynamics and Loss
,”
ASME
Paper No. GT2012-68302.10.1115/GT2012-68302
10.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
133
(
4
), p.
041027
.10.1115/1.4003063
11.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
Usandizaga
, I
.
,
He
,
L.
, and
Ligrani
,
P. M.
,
2010
, “
Transonic Turbine Blade Tip Aero-Thermal Performance With Different Tip Gaps—Part II: Tip Aerodynamic Loss
,”
ASME
Paper No. GT2010-22780. 10.1115/GT2010-22780
12.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
,
1981
, “
Rotor-Tip Leakage Part 1—Basic Methodology
,” ASME Paper No. 81-GT-71.
13.
Schabowski
,
Z.
,
Hodson
,
H. P.
,
Giacche
,
D.
,
Power
,
B.
, and
Stokes
,
M. R.
,
2010
, “
Aeromechanical Optimisation of a Winglet-Squealer Tip for an Axial Turbine
,”
ASME
Paper No. GT2010-23542.10.1115/GT2010-23542
14.
Zhou
,
C.
,
Hodson
,
H. P.
, and
Tibbott
,
I.
,
2011
, “
The Aero-Thermal Performance of a Cooled Winglet Tip in a High Pressure Turbine Cascade
,”
ASME
Paper No. GT2011-46369. 10.1115/GT2011-46369
15.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
ASME J. Turbomach.
,
133
(
4
), p.
041026
.10.1115/1.4003055
16.
Atkins
,
N. R.
, and
Ainsworth
,
R. W.
,
2012
, “
Turbine Aerodynamic Performance Measurements Under Nonadiabatic Conditions
,”
ASME J. Turbomach.
,
134
(
6
), p.
061001
.10.1115/1.4004857
17.
Yoon
,
S.
,
Curtis
,
E.
,
Denton
,
J. D.
, and
Longley
,
J. P.
,
2010
, “
The Effect of Clearance on Shrouded and Unshrouded Turbines at Two Levels of Reaction
,”
ASME
Paper No. GT2010-22541. 10.1115/GT2010-22541
18.
Prakash
,
C. C.
,
Lee
,
C. P.
,
Cherry
,
D. G.
,
Doughty
,
R. R.
, and
Wadia
A. R.
,
2005
, “
Analysis of Some Improved Blade Tip Concepts
ASME J. Turbomach.
,
128
(
4
), pp.
639
642
.10.1115/1.2220050
19.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2013
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME
Paper No. TBTS2013-2057. 10.1115/TBTS2013-2057
You do not currently have access to this content.