The focus of the present study is to assess and quantify the uncertainty in predicting the steady and unsteady aerodynamic performance as well as the major mechanical characteristics of a contrarotating turbofan, primarily due to geometric variations stemming from the manufacturing process. The basis of this study is the optically scanned blisk of the first rotor, for which geometric variations from blade to blade are considered. In a first step, selected profile sections of the first rotor were evaluated aerodynamically by applying the 2D coupled Euler/boundary-layer solver mises. Statistical properties of the relevant flow quantities were calculated firstly based on the results of the nine manufactured blades. In a second step, the geometric variations were decomposed into their corresponding eigenforms by means of principal component analysis (PCA). These modes were the basis for carrying out Monte Carlo (MC) simulations in order to analyze in detail the blade's aerodynamic response to the prescribed geometric variations. By means of 3D-computational fluid dynamics (CFD) simulations of the entire fan stage for all the nine scanned rotor 1 blade geometries, the variation of the overall stage performance parameters will be quantified. The impact of the instrumentation will be discussed, here partly doubling the standard deviation of the major performance indicators for the instrumented blades and also triggering a premature laminar/turbulent transition of the boundary layer. In terms of the unsteady blade row interaction, the standard deviation of the resulting blade pressure amplitude shall be discussed based on unsteady simulations, taking advantage of a novel harmonic balance approach. It will be shown that the major uncertainty in terms of the predicted blade pressure amplitude is in the aft part of the front rotor and results from upstream shock/blade interaction. Apart from the aerodynamic performance, an analysis of the mechanical properties in terms of Campbell characteristics and eigenfrequencies was carried out for each of the scanned blades of rotor 1, reflecting the frequency scattering of each eigenmode due to geometric variability.

References

References
1.
Garzon
,
V. E.
,
2002
, “
Probabilistic Aerothermal Design of Compressor Airfoils
,” Ph.D. thesis, MIT, Cambridge, MA.
2.
Goodhand
,
M. N.
,
Miller
,
R. J.
, and
Lung
,
H. W.
,
2012
, “
The Sensitivity of 2D Compressor Incidence to In-Service Geometric Variation
,”
ASME
Paper No. GT2012-68633.10.1115/GT2012-68633
3.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2011
, “
Impact of Manufacturing Variability and Nonaxisymmetry on High-Pressure Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
143
(3), p.
032504
.10.1115/1.4004404
4.
Lamb
,
C. M.
,
2005
, “
Probabilistic Performance-Based Geometric Tolerancing of Compressor Blades
,” Master's thesis, MIT, Cambridge, MA.
5.
Giebmanns
,
A.
,
Backhaus
,
J.
,
Frey
,
C.
, and
Schnell
,
R.
,
2013
, “
Compressor Leading Edge Sensitivities and Analysis With an Adjoint Flow Solver
,”
ASME
Paper No. GT2013-94427.10.1115/GT2013-94427
6.
Aulich
,
A.-L.
,
Goerke
,
D.
,
Blocher
,
M.
,
Nicke
,
E.
, and
Kocian
,
F.
,
2013
, “
Automated Optimization Strategy on a Counter Rotating Fan
,”
ASME
Paper No. GT2013-94259.10.1115/GT2013-94259
7.
Schnell
,
R.
,
Giebmanns
,
A.
,
Nicke
,
E.
, and
Dabrock
,
T. C.
,
2009
, “
Aerodynamic Analysis of a Fan for Future Ultra-High-Bypass-Ratio Aero Engines
,”
19th International Symposium on Air Breathing Engines (ISABE)
,
Montreal, Canada
, September 7–11, Paper No. 2009-1149.
8.
Talbotec
,
J.
, and
Vernet
,
M.
,
2010
, “
Snecma Counter Rotating Fan Aerodynamic Design: Logic & Tests Results
,”
27th Congress of International Council of the Aeronautical Science
, Nice, France, September 19–24, Paper ICAS 2010-4.1.2.
9.
Lengyel
,
T.
,
Voß
,
C.
,
Schmidt
,
T.
, and
Nicke
,
E.
,
2009
, “
Design of a Counter Rotating Fan—An Aircraft Engine Technology to Reduce Noise and CO2-Emissions
,”
19th International Symposium on Air Breathing Engines (ISABE)
,
Montreal, Canada
, September 7–11, Paper No. 2009-1267.
10.
Mileshin
,
V.
,
Popovyan
,
A.
,
Korznev
,
V.
,
Maximov
,
V.
, and
Khaletskiy
,
Y.
,
2009
, “
C-3A Aero-Acoustic Test Facility of CIAM and Use for VITAL Counter Rotating Fan Tests (CRTF1 Application)
,”
Proceedings of The VITAL Final Workshop
,
Budapest, Hungary
, March 9–10, Paper No. 19.
11.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.10.1115/1.1622715
12.
Holtzhausen
,
S.
,
Schreiber
,
S.
,
Schöne
,
C.
,
Stelzer
,
R.
,
Heinze
,
K.
, and
Lange
,
A.
,
2009
, “
Highly Accurate Automated 3D Measuring and Data Conditioning for Turbine and Compressor Blades
,”
ASME
Paper No. GT2009-59902.10.1115/GT2009-59902
13.
Kumar
,
A.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and
Shahpar
,
S.
,
2005
, “
Probabilistic Performance Analysis of Eroded Compressor Blades
,”
ASME
Paper No. PWR2005-50070.10.1115/PWR2005-50070
14.
Heinze
,
K.
,
Schrape
,
S.
,
Voigt
,
M.
, and
Vogeler
,
K.
,
2012
, “
Probabilistic Endurance Level Analyses of Compressor Blades
,”
CEAS Aeronaut. J.
, 2012,
3
(1), pp.
55
65
.10.1007/s13272-012-0043-y
15.
Drela
,
M.
, and
Youngren
,
H.
,
1998
,
A User's Guide to Mises 2.53
,
MIT
,
Cambridge, MA
.
16.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2012
, “
Compressor Leading Edge Spikes: A New Performance Criterion
,”
ASME J. Turbomach.
,
133
(2), p.
021006
.10.1115/1.4000567
17.
Drela
,
M.
,
1998
,
Mises Implementation of Modified Abu-Ghannam/Shaw Transition Criterion
,
MIT
,
Cambridge, MA
.
18.
Giebmanns
,
A.
,
Schnell
,
R.
,
Steinert
,
W.
,
Hergt
,
A.
,
Nicke
,
E.
, and
Werner-Spatz
,
C.
,
2012
, “
Analysing and Optimising Geometrically Degraded Transonic Fan Blades by Means of 2D and 3D Simulations and Cascade Measurements
,”
ASME
Paper No. GT2012-69064.10.1115/GT2012-69064
19.
Lengyel-Kampmann
,
T.
,
Bischoff
,
A.
,
Meyer
,
R.
, and
Nicke
,
E.
,
2012
, “
Design of an Economical Counter-Rotating Fan: Comparison of the Calculated and Measured Steady and Unsteady Results
,”
ASME
Turbo Expo, Copenhagen, Denmark, Paper No. GT2012-69587.10.1115/GT2012-69587
20.
Franke
,
M.
,
Roeber
,
T.
,
Kuegeler
,
E.
, and
Ashcroft
,
G.
,
2010
, “
Turbulence Treatment in Steady and Unsteady Turbomachinery Flows
,”
Fifth European Conference on Computational Fluid Dynamics (ECCOMAS CFD
2010), Lisbon, Portugal, June 14–17.
21.
Giebmanns
,
A.
,
Schnell
,
R.
, and
Nicke
,
E.
,
2012
, “
Numerical Analysis of Typical Degradation Characteristics of a Transonic Fan
,” German Aerospace Center (DLR), Cologne, Germany, Internal Report No. DLR-IB-325-03-13.
22.
Schlichting
,
H.
,
1982
,
Boundary Layer Theory (Grenzschichttheorie)
,
8th ed.
,
G.
Braun
, ed.,
Wissenschaftliche Bücherei Verlag
,
Stuttgart
, Germany.
23.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
2nd ed.
,
McGraw-Hill
,
New York
.
24.
McMullen
,
M. S.
,
2003
, “
The Application of Non-Linear Frequency Domain Methods to the Euler and Navier-Stokes Equations
,” Ph.D. thesis, Stanford University, Stanford, CA.
25.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/3.15137
26.
He
,
L.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
27.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Turbomachinery Applications
,”
ASME
Paper No. GT2014-25230.10.1115/GT2014-25230
28.
Sinha
,
A.
,
Hall
,
B.
,
Cassenti
,
B.
, and
Hilber
,
G.
,
2008
, “
Vibratory Parameters of Blades From Coordinate Measurement Machine Data
,”
ASME J. Turbomach.
,
130
(
1
), p.
011013
.10.1115/1.2749293
29.
Beck
,
J. A.
,
Brown
,
J. M.
,
Slater
,
J. C.
, and
Cross
,
C. J.
,
2013
, “
Probabilistic Mistuning Assessment Using Nominal and Geometry Based Mistuning Methods
,”
ASME J. Turbomach.
,
135
(
5
), p.
051004
.10.1115/1.4023103
30.
Reddy
,
T. S. R.
,
Mital
,
S. K.
, and
Stefko
,
G. L.
,
2004
, “
Probabilistic Aeroelastic Analysis of Turbomachinery Components
,” NASA Technical Memorandum No. TM-2004-213063.
31.
Joshi
,
A. G.
, and
Epureanu
,
B. I.
,
2012
, “
Reduced Order Models for Blade-to-Blade Damping Variability in Mistuned Blisks
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051015
.10.1115/1.4006880
32.
Dhondt
,
G.
,
2004
,
The Finite Element Method for Three-Dimensional Thermomechanical Applications
,
Wiley
,
Hoboken
, NJ.
33.
Siller
,
U.
, and
Aulich
,
M.
,
2011
, “
High-Dimensional Constrained Multiobjective Optimization of a Fan Stage
,”
ASME
Paper No. GT2011-45618.10.1115/GT2011-45618
34.
Cailleau
,
J. M.
,
Talbotec
,
J.
, and
Farvacque
,
B.
,
2007
, “
VITAL WP2.4 T2.4.4 CRTF2b Specifications
,” EU Project VITAL Deliverable.
You do not currently have access to this content.