State-of-the-art liner cooling technology for modern combustors is represented by effusion cooling (or full-coverage film cooling). Effusion is a very efficient cooling strategy based on the use of multiperforated liners, where the metal temperature is lowered by the combined protective effect of the coolant film and heat removal through forced convection inside each hole. The aim of this experimental campaign is the evaluation of the thermal performance of multiperforated liners with geometrical and fluid-dynamic parameters ranging among typical combustor engine values. Results were obtained as the adiabatic film effectiveness following the mass transfer analogy by the use of pressure sensitive paint, while the local values of the overall effectiveness were obtained by eight thermocouples housed in as many dead holes about 2 mm below the investigated surface. Concerning the tested geometries, different porosity levels were considered: such values were obtained by both increasing the hole diameter and pattern spacing. Then the effect of the hole inclination and aspect ratio pattern shape were tested to assess the impact of typical cooling system features. Seven multiperforated planar plates, reproducing the effusion arrays of real combustor liners, were tested, imposing six blowing ratios in the range 0.5–5. Additional experiments were performed in order to explore the effect of the density ratio (DR=1;1.5) on the film effectiveness. Test samples were made of stainless steel (AISI304) in order to achieve the Biot number similitude for the overall effectiveness tests. To extend the validity of the survey a correlative analysis was performed to point out, in an indirect way, the augmentation of the hot side heat transfer coefficient due to effusion jets. Finallyv,in order to address the thermal behavior of the different geometries in the presence of gas side radiation, additional simulations were performed considering different levels of radiative heat flux.

References

References
1.
Moskal
,
F.
,
1991
, “
Manufacturing of Effusion Cooled Combustors
,”
Aerospace Atlantic Conference and Exposition
, Dayton, OH, April 22–26,
SAE
Paper No. 911141.10.4271/911141
2.
Andrews
,
G. E.
,
Khalifa
,
I. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
,
1995
, “
Full Coverage Effusion Film Cooling With Inclined Holes
,”
ASME
Paper No. 95-GT-274.
3.
Dowling
,
A.
, and
Hughes
,
I.
,
1992
, “
Sound Absorption by a Screen With a Regular Array of Slits
,”
J. Sound Vib.
,
156
(
3
), pp.
387
405
.10.1016/0022-460X(92)90735-G
4.
Bellucci
,
V.
,
Flohr
,
P.
, and
Paschereit
,
C.
,
2002
, “
Impedance of Perforated Screen With Bias Flow
,”
AIAA
Paper No.
2002
2437
.10.2514/6.2002-2437
5.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Int. Symp. Combust.
,
27
(
2
), pp.
1809
1816
.10.1016/S0082-0784(98)80022-2
6.
Dowling
,
A.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
7.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors: Internal Combustion Engines
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
182
189
.10.1115/1.1339002
8.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
,
101
(
1
), pp.
101
108
.10.1115/1.3446430
9.
Mayle
,
R. E.
, and
Camarata
,
F. J.
,
1975
, “
Multihole Cooling Film Effectiveness and Heat Transfer
,”
ASME J. Heat Transfer
,
97
(
4
), pp.
534–538
.10.1115/1.3450424
10.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Gupta
,
M. L.
, and
Mkpadi
,
M. C.
,
1990
, “
Effusion Cooling: The Influence of Number of Holes
,”
Proc. Inst. Mech. Eng., Part A
,
204
(
3
), pp.
175–182
.10.1243/PIME_PROC_1990_204_024_02
11.
Andrews
,
G. E.
,
Bazdidi-Tehrani
,
F.
,
Hussain
,
C. I.
, and
Pearson
,
J. P.
,
1991
, “
Small Diameter Film Cooling Hole Heat Transfer: The Influence of Hole Length
,”
ASME
Paper No. 91-GT-344.
12.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
798
805
.10.1115/1.1400111
13.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2005
, “
Experimental Characterization of Film-Cooling Effectiveness Near Combustor Dilution Holes
,”
ASME
Paper No. GT2005-68704.10.1115/GT2005-68704
14.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2006
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME
Paper No. GT2006-90532.10.1115/GT2006-90532
15.
Arcangeli
,
L.
,
Facchini
,
B.
,
Surace
,
M.
, and
Tarchi
,
L.
,
2008
, “
Correlative Analysis of Effusion Cooling Systems
,”
ASME J. Turbomach.
,
130
(
1
), p.
011016
.10.1115/1.2749298
16.
Ligrani
,
P.
,
Goodro
,
M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2012
, “
Full-Coverage Film Cooling: Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios
,”
ASME J. Turbomach.
,
134
(
6
), p.
061039
.10.1115/1.4006304
17.
Martin
,
A.
and
Thorpe
,
S. J.
,
2012
, “
Experiments on Combustor Effusion Cooling Under Conditions of Very High Free-Stream Turbulence
,”
ASME
Paper No. GT2012-68863.10.1115/GT2012-68863
18.
Ceccherini
,
A.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Toni
,
L.
, and
Coutandin
,
D.
,
2009
, “
Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Cooling Performance of a Real Combustor Liner
,”
ASME
Paper No. GT2009-60047.10.1115/GT2009-60047
19.
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutadin
,
D.
,
2010
, “
Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Heat Transfer Coefficient of a Real Combustor Liner—Part 1: Experimental Analysis
,”
ASME
Paper No. GT2010-22936.10.1115/GT2010-22963
20.
Andreini
,
A.
,
Facchini
,
B.
,
Ferrari
,
L.
,
Lenzi
,
G.
,
Simonetti
,
F.
, and
Peschiulli
,
A.
,
2012
, “
Experimental Investigation on Effusion Liner Geometries for Aero-Engine Combustors: Evaluation of Global Acoustic Parameters
,”
ASME
Paper No. GT2012-68953.10.1115/GT2012-69853
21.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W.
, and
Thole
,
K. A.
,
2002
, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade
,”
ASME
Paper No. GT2002-30523.10.1115/GT2002-30523
22.
Roach
,
P. E.
,
1987
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Heat Fluid Flow
,
8
(
2
), pp.
83
92
.10.1016/0142-727X(87)90001-4
23.
Navarra
,
K. R.
,
1997
, “
Development of the Pressure-Sensitive-Paint Technique for Turbomachinery Applications
,” Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, Report No. AFRL-PR-WP-TR-2002-2030.
24.
Eldredge
,
J.
, and
Dowling
,
A.
,
2003
, “
The Absorption of Axial Acoustic Waves by a Perforated Liner With Bias Flow
,”
J. Fluid Mech.
,
485
, pp.
307
335
.10.1017/S0022112003004518
25.
Heuwinkel
,
C.
,
Enghardt
,
L.
,
Bake
,
F.
,
Sadig
,
S.
, and
Gerendás
,
M.
,
2010
, “
Establishment of a High Quality Database for the Modelling of Perforated Liners
,”
ASME
Paper No. GT2010-22329.10.1115/GT2010-22329
26.
Cho
,
H. H.
, and
Goldstein
,
R. J.
,
1995
, “
Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part I—Within Holes and on the Back Surface
,”
ASME J. Turbomach.
,
117
(
3
), pp.
440
450
.10.1115/1.2835680
27.
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Tarchi
,
L.
,
2013
, “
Comparison Between PSP and TLC Steady State Techniques for Adiabatic Effectiveness Measurement on a Multiperforated Plate
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
122
133
.10.1016/j.expthermflusci.2013.02.015
28.
Liu
,
K.
,
Narzary
,
D. P.
,
Han
,
J. C.
,
Mirzamoghadam
,
A. V.
, and
Riahi
,
A.
,
2011
, “
Influence of Shock Wave on Turbine Vane Suction Side Film Cooling With Compound-Angle Shaped Holes
,”
ASME
Paper No. GT2011–45927.10.1115/GT2011-45927
29.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.10.1016/S0142-727X(99)00017-X
30.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Kobke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
ASME
Paper No. GT2009-60306.10.1115/GT2009-60306
31.
Kline
,
S. J.
and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
ASME J. Mech. Eng.
,
75
, pp.
3
8
.
32.
Ceccherini
,
A.
,
Facchini
,
B.
,
Tarchi
,
L.
, and
Toni
,
L.
,
2008
, “
Adiabatic and Overall Effectiveness Measurements of an Effusion Cooling Array for Turbine Endwall Application
,”
ASME
Paper No. GT2008-50826.10.1115/GT2008-50826
33.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2012
, “
Conjugate Heat Transfer Predictions of Effusion Cooling: The Influence of the Coolant Jet-Flow Direction on the Cooling Effectiveness
,”
ASME
Paper No. GT2012–68517.10.1115/GT2012-68517
34.
Mayhew
,
J. E.
,
Baughn
,
J. W.
, and
Byerley
,
A. R.
,
2003
, “
The Effect of Freestream Turbulence on Film Cooling Adiabatic Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(
5
), pp.
669
679
.10.1016/S0142-727X(03)00081-X
35.
L'Ecuyer
,
M. R.
, and
Soechting
,
F. O.
,
1985
, “
A Model for Correlating Flat Plate Film Cooling Effectiveness for Rows of Round Holes
,” AGARD Heat Transfer and Cooling in Gas Turbines, Paper No. N86-29823 21-07.
36.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.10.1115/1.2840939
37.
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1995
, “
Full-Coverage Film Cooling Investigations: Adiabatic Wall Temperatures and Flow Visualization
,”
ASME
Paper No. 95-WA/HT-4.
38.
Kakade
,
V. U.
,
Thorpe
,
S. J.
, and
Gerendas
,
M.
,
2012
, “
Effusion-Cooling Performance at Gas Turbine Combustor Representative Flow Conditions
,”
ASME
Paper No. GT2012-68115.10.1115/GT2012-68115
39.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
Taylor & Francis
,
London
.
40.
Andreini
,
A.
,
Carcasci
,
C.
,
Ceccherini
,
A.
,
Facchini
,
B.
,
Surace
,
M.
,
Coutandin
,
D.
,
Gori
,
S.
, and
Peschiulli
,
A.
,
2007
, “
Combustor Liner Temperature Prediction: A Preliminary Tool Development and Its Application on Effusion Cooling Systems
,”
First CEAS European Air and Space Conference Century Perspectives
, Berlin, September 10–13, Paper No. 026.
41.
Andreini
,
A.
,
Ceccherini
,
A.
,
Facchini
,
B.
,
Turrini
,
F.
, and
Vitale
, I
.
,
2009
, “
Assessment of a Set of Numerical Tools for the Design of Aero-Engines Combustors: Study of a Tubular Test Rig
,”
ASME
Paper No. GT2009-59539.10.1115/GT2009-59539
42.
Dorignac
,
E.
,
Vullierme
,
J.-J.
,
Broussely
,
M.
,
Foulon
,
C.
, and
Mokkadem
,
M.
,
2005
, “
Experimental Heat Transfer on the Windward Surface of a Perforated Flat Plate
,”
Int. J. Therm. Sci.
,
44
(
9
), pp.
885
893
.10.1016/j.ijthermalsci.2004.11.012
43.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
699
709
.10.1115/1.1505848
44.
Behrendt
,
T.
and
Gerendás
,
M.
,
2012
, “
Characterization of the Influence of Moderate Pressure Fluctuations on the Cooling Performance of Advanced Combustor Cooling Concepts in a Reacting Flow
,”
ASME
Paper No. GT2012-68845.10.1115/GT2012-68845
45.
Yang
,
Q.
,
Lin
,
Y.
,
Xu
,
Q.
,
Zhang
,
C.
, and
Sung
,
C.-J.
,
2012
, “
Cooling Effectiveness of Impingement/Effusion Cooling With and Without Turbulence Promoter Ribs
,”
ASME
Paper No. GT2012-69209.10.1115/GT2012-69209
You do not currently have access to this content.