Thermal barrier coatings (TBC) see extensive use in high-temperature gas turbines. However, little work has been done to experimentally characterize the combination of TBC and film cooling. The purpose of this study is to investigate the cooling performance of a thermally conducting turbine vane with a realistic film-cooling trench geometry embedded in TBC. Additionally, the effect of contaminant deposition on the realistic trench was studied. The trench is termed realistic because it takes into account probable manufacturing limitations. The vane model and TBC used for this study were designed to match the thermal behavior of an actual gas turbine vane with TBC by properly scaling their convective heat-transfer coefficients, thermal conductivities, and characteristic length scales. This study built upon previously published results with various film-cooling geometries consisting of round holes, craters, an ideal trench, and a novel trench. The previous study showed that large changes in blowing ratio resulted in negligible effects on cooling performance. Changes to film-cooling geometry also resulted in minor effects on cooling performance. This study found that the realistic trench and an idealized trench perform similarly. However, the width of the realistic trench left the vane wall more exposed to mainstream temperatures, especially at lower film-coolant flow rates. This study also found that the trench designs helped to mitigate deposition formation better than round holes; however, the realistic trench was more prone to deposition within the trench. The overall cooling effectiveness was similar for both trench designs and relatively unchanged from the predeposition performance, while the overall cooling effectiveness for round holes increased due to the additional thermal insulation offered by the unmitigated deposition.

References

References
1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
, pp.
249
270
.10.2514/1.18034
2.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
, and
Laskowski
,
G. M.
,
2013
, “
Overall and Adiabatic Effectiveness Values on a Scaled Up, Simulated Gas Turbine Vane: Part I—Experimental Measurements
,”
ASME J. Turbomach.
,
135
(5), p.
051017
.10.1115/1.4023105
3.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2013
, “
Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side With a Trench
,”
ASME J. Turbomach.
,
135
(5), p.
051007
.10.1115/1.4007820
4.
Davidson
,
F. T.
,
Dees
,
J. E.
, and
Bogard
,
D. G.
,
2011
, “
An Experimental Study of Thermal Barrier Coatings and Film Cooling on an Internally Cooled Simulated Turbine Vane
,”
ASME
Paper No. GT2011-46604.10.1115/GT2011-46604
5.
Davidson
,
F. T.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2012
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches
,”
ASME
Paper No. GT2012-70029.10.1115/GT2012-70029
6.
Bunker
,
R.
,
2002
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
ASME
Paper No. GT2002-30178.10.1115/GT2002-30178
7.
Waye
,
S. K.
, and
Bogard
,
D. G.
,
2007
, “
High Resolution Film Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench With Various Trench Configurations
,”
ASME J. Turbomach.
,
129
(
2
), pp.
294
302
.10.1115/1.2464141
8.
Dorrington
,
J. R.
,
Bogard
,
D. G.
, and
Bunker
,
R. S.
,
2007
, “
Film Effectiveness Performance for Coolant Holes Embedded in Various Shallow Trench and Crater Depressions
,”
ASME
Paper No. GT2007-27992.10.1115/GT2007-27992
9.
Bunker
,
R. S.
,
2001
, “
A Method for Improving the Cooling Effectiveness of a Gaseous Coolant Stream
,” U.S. Patent 6234755.
10.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
11.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(5), p.
051503
.10.1115/1.2903901
12.
Ai
,
W.
,
Laylock
,
R. G.
,
Rappleye
,
D. S.
,
Fletcher
,
T. H.
, and
Bons
,
J. P.
,
2011
, “
Effect of Particle Size and Trench Configuration on Deposition From Fine Coal Flyash Near Film Cooling Holes
,”
Energy Fuels
,
25
(
3
), pp.
1066
1076
.10.1021/ef101375g
13.
Albert
,
J. E.
,
Keefe
,
K. J.
, and
Bogard
,
D. G.
,
2013
, “
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge
,”
ASME J. Turbomach.
,
135
(5), p.
051008
.10.1115/1.4007821
14.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2012
, “
Simulations of Multi-Phase Particle Deposition on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
134
(
1
), p.
011003
.10.1115/1.4002962
15.
Davidson
,
F. T.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2012
, “
A Study of Deposition on a Turbine Vane With a Thermal Barrier Coating and Various Film Cooling Geometries
,”
ASME
Paper No. GT2012-70033.10.1115/GT2012-70033
16.
Albert
,
J. E.
,
2011
, “
Experimental Simulation and Mitigation of Contaminant Deposition on Film Cooled Gas Turbine Airfoils
,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
17.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2000
, “
Effects of Showerhead Cooling on Turbine Vane Suction Side Film Cooling Effectiveness
,”
ASME IMECE Conference
, Orlando, FL, November 5–10.
18.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2012
, “
Experimental Measurements and Computational Predictions for an Internally Cooled Simulated Turbine Vane
,”
ASME J. Turbomach.
,
134
(6), p.
061003
.10.1115/1.4006280
19.
Shih
,
T.
,
Chi
,
K.
,
Ramachandran
,
P.
,
Ames
,
R.
, and
Dennis
,
R.
,
2010
, “
The Role of the Biot Number in Turbine-Cooling Design and Analysis,
2010 DOE UTSR Workshop
, Penn State University, State College, PA, October 19–21.
20.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(4), p.
041018
.10.1115/1.3072494
21.
Feuerstein
,
A.
,
Knapp
,
J.
,
Taylor
,
T.
,
Ashary
,
A.
,
Bolcavage
,
A.
, and
Hitchman
,
N.
,
2008
, “
Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review
,”
J. Thermal Spray Technol.
,
17
(
2
), pp.
199
213
.10.1007/s11666-007-9148-y
22.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(5566), pp.
280
284
.10.1126/science.1068609
23.
Soechting
,
F. O.
,
1999
, “
A Design Perspective on Thermal Barrier Coatings
,”
J. Thermal Spray Technol.
,
8
(
4
), pp.
505
511
.10.1361/105996399770350179
24.
Special Metals Corporation
, “
Inconel® Alloy X-750 Data Sheet, Publication No. SMC-067
,” September
2004
, http://www.specialmetals.com
25.
Rigney
,
D. V.
,
Viguie
,
R.
,
Wortman
,
D. J.
, and
Skelly
,
D. W.
,
1997
, “
PVD Thermal Barrier Coating Applications and Process Development for Aircraft Engines
,”
J. Thermal Spray Technol.
,
6
(
2
), pp.
167
175
.10.1007/s11666-997-0008-6
26.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
2nd ed.
,
Wiley-Interscience
,
New York
.
27.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
,
2007
, “
High Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Eng. Gas Turbines Power
,
129
(1), pp.
135
143
.10.1115/1.2181181
28.
Rezaei
,
H. R.
,
Gupta
,
R. P.
,
Bryant
,
G. W.
,
Hart
,
J. T.
,
Liu
,
G. S.
,
Bailey
,
C. W.
,
Wall
,
T. F.
,
Miyamae
,
S.
,
Makino
,
K.
, and
Endo
,
Y.
,
2000
, “
Thermal Conductivity of Coal Ash and Slags and Models Used
,”
Fuel
,
17
(13), pp.
1697
1710
.10.1016/S0016-2361(00)00033-8
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
J. Thermal Fluid Sci.
,
1
(1), pp.
3
17
.10.1016/0894-1777(88)90043-X
31.
Davidson
,
F. T.
,
2012
, “
An Experimental Study of Film Cooling, Thermal Barrier Coatings and Contaminant Deposition on an Internally Cooled Turbine Airfoil Model
,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
32.
Lewis
,
S.
,
Barker
,
B.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2011
, “
Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes
,”
ASME J. Turbomach.
,
133
(
3
), p.
031003
.10.1115/1.4001190
33.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J. P.
,
Gledhill
,
A. D.
, and
Padture
,
N. P.
,
2013
, “
Coal Ash Deposition on Nozzle Guide Vanes: Part I—Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(2), p.
021033
.10.1115/1.4006571
You do not currently have access to this content.