This paper presents an industrial perspective on the potential use of multiple-airfoil row unsteady computational fluid dynamics (CFD) calculations in high-pressure turbine design cycles. A sliding-mesh unsteady CFD simulation is performed for a high-pressure turbine section of a modern aviation engine at conditions representative of engine take-off. The turbine consists of two stages plus a center-frame strut upstream of the low-pressure turbine. The airfoil counts per row are such that a half-annulus model domain must be simulated for periodicity. The total model domain size is 170 MM computational grid points and the solution requires approximately nine days of clock time on 6288 processing cores of a Cray XE6 supercomputer. Airfoil and endwall cooling flows are modeled via source term additions to the flow. The endwall flowpath cavities and their purge/leakage flows are resolved in the computational meshes to an extent. The time-averaged temperature profile solution is compared with static rake data taken in engine tests. The unsteady solution shows a considerable improvement in agreement with the rake data, compared with a steady-state solution using circumferential mixing planes. Passage-to-passage variations in the gas temperature prediction are present in the 2nd stage, due to nonperiodic alignment between the nozzle vanes and rotor blades. These passage-to-passage differences are quantified and contrasted.

References

References
1.
Adamczyk
,
J. J.
,
2000
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.10.1115/1.555439
2.
Praisner
,
T. J.
,
Grover
,
E.
,
Mocanu
,
R.
,
Jurek
,
R.
, and
Gacek
,
R.
,
2010
, “
Predictions of Unsteady Interactions Between Closely Coupled HP and LP Turbines With Co- and Counter-Rotation
,”
ASME
Paper No. GT2010-23681.10.1115/GT2010-23681
3.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows—Part 1: Progress and Challenges
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
522
545
.10.1016/j.paerosci.2011.06.004
4.
Atkins
,
N. R.
,
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2012
, “
Unsteady Effects on Transonic Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
134
(
6
), p.
061002
.10.1115/1.4004845
5.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K.
, and
Povey
,
T.
,
2012
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061023
.10.1115/1.4004876
6.
Shyam
,
V.
,
Ameri
,
A.
,
Luk
,
D. F.
, and
Chen
,
J. P.
, “
3-D Unsteady Simulation of a Modern High Pressure Turbine Stage Using Phase Lag Periodicity: Analysis of Flow and Heat Transfer
,”
ASME
Paper No. GT2009-60322.10.1115/GT2009-60322
7.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J. P.
,
2011
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.10.1115/1.4003719
8.
Simone
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K. S.
,
Qureshi
,
I.
, and
Povey
,
T.
,
2010
, “
Analysis on the Effect of a Non-Uniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME
Paper No. GT2010-23526.10.1115/GT2010-23526
9.
Basol
,
A. M.
,
Jenny
,
P.
,
Ibrahim
,
J. M.
,
Kalfas
,
A.
, and
Abhari
,
R. S.
,
2011
, “
Hot Streak Migration in a Turbine Stage: Integrated Design to Improve Aerothermal Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061901
.10.1115/1.4002349
10.
Ong
,
J.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051003
.10.1115/1.4003838
11.
Ong
,
J.
and
Miller
,
R. J.
,
2012
, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME J. Turbomach.
,
134
(
5
), p.
051002
.10.1115/1.4003832
12.
Felten
,
F. N.
,
Kapetanovic
,
S.
,
Holmes
,
D. G.
, and
Ostrowski
,
M.
,
2008
, “
Gas Turbine Temperature Prediction Using Unsteady CFD and Realistic Non-Uniform 2D Combustor Exit Properties
,”
ASME
Paper No. GT2008-50275.10.1115/GT2008-50275
13.
An
,
B.-T.
,
Liu
,
J.-J.
,
Jiang
,
H.-D.
,
2008
, “
Numerical Investigation on Unsteady Effects of Hot Streak on Flow and Heat Transfer in a Turbine Stage
,”
ASME
Paper No. GT2008-50415.10.1115/GT2008-50415
14.
Kim
,
S. I.
,
Rahman
,
M. D.
, and
Hassan
,
I.
,
2009
, “
Effect of Turbine Inlet Temperature on Blade Tip Leakage Flow and Heat Transfer
,”
ASME
Paper No. GT2009-60143.10.1115/GT2009-60143
15.
Sipatov
,
A.
,
Gomzikov
,
L.
,
Latyshev
,
V.
, and
Gladysheva
,
N.
,
2009
, “
Three-Dimensional Heat Transfer Analysis of High Pressure Turbine Blade
,”
ASME
Paper No. GT2009-59163.10.1115/GT2009-59163
16.
An
,
B.-T.
,
Liu
,
J.-J.
,
Jiang
,
H.-D.
,
2009
, “
Combined Unsteady Effects of Hot Streak and Trailing Edge Coolant Ejection in a Turbine Stage
,”
ASME
Paper No. GT2009-59473.10.1115/GT2009-59473
17.
Rahman
,
M. H.
,
Kim
,
S. I.
,
Hassan
,
I.
, and
El Ayoubi
,
C.
,
2010
, “
Unsteady Tip Leakage Flow Characteristics and Heat Transfer on Turbine Blade Tip and Casing
,”
ASME
Paper No. GT2010-22104.10.1115/GT2010-22104
18.
Chang
,
D.
and
Tavoularis
,
S.
,
2009
, “
Unsteady Vortices and Blade Loading in a High-Pressure Turbine
,”
ASME
Paper No. GT2009-59189.10.1115/GT2009-59189
19.
Smith
,
C. I.
,
Chang
,
D.
, and
Tavoularis
,
S.
,
2010
, “
Effect of Inlet Temperature Non-Uniformity on High-Pressure Turbine Performance
,”
ASME
Paper No. GT2010-22845.10.1115/GT2010-22845
20.
Qinjung
,
Z.
,
Fei
,
T.
,
Huishe
,
W.
,
Jianyi
,
D.
,
Xiaolu
,
Z.
, and
Jianzhong
,
X.
,
2007
, “
Influence of Hot Streak Temperature Ratio on Low Pressure Stage of a Vaneless Counter-Rotating Turbine
,”
ASME
Paper No. GT2007-27028.10.1115/GT2007-27028
21.
Qingjun
,
Z.
,
Jianyi
,
D.
,
Huishe
,
W.
,
Xiaolu
,
Z.
, and
Jianzhong
,
X.
,
2008
, “
Tip Clearance Effects on Inlet Hot Streaks Migration Characteristics in High Pressure Stage of a Vaneless Counter-Rotating Turbine
,”
ASME
Paper No. GT2008-50582.10.1115/GT2008-50582
22.
Hills
,
N. J.
,
2007
, “
Whole Turbine CFD Modeling
,”
ASME
Paper No. GT2007-27918.10.1115/GT2007-27918
23.
Yao
,
J.
,
Davis
,
R. L.
,
Alonso
,
J. J.
, and
Jameson
,
A.
,
2002
, “
Massively-Parallel Simulation of the Unsteady Flow in an Axial Turbine Stage
,”
J. Propul. Power
,
18
(
2
), pp.
465
471
.10.2514/2.5957
24.
Holmes
,
D. G.
,
Moore
,
B. J.
, and
Connell
,
S. D.
,
2011
, “
Unsteady vs. Steady Turbomachinery Flow Analysis: Exploiting Large-Scale Computations to Deepen Our Understanding of Turbomachinery Flows
,”
SciDAC Conference
,
Denver, CO
, July 10–14.
25.
Holmes
,
D. G.
,
Mitchell
,
B. E.
, and
Lorence
,
C. B.
,
1997
, “
Three-Dimensional Linearized Navier–Stokes Calculations for Flutter and Forced Response
,”
8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines
,
Stockholm, Sweden
, September 14–18, pp. 211–224.10.1007/978-94-011-5040-8_14
26.
Yao
,
J.
and
Carson
,
S.
,
2006
, “
HPT/LPT Interaction and Flow Management in the Inter-Turbine Space of a Modern Axial Flow Turbine
,”
ASME
Paper No. GT2006-68506.10.1115/GT2006-68506
27.
Tallman
,
J. A.
,
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Tolpadi
,
A. K.
, and
Bergholz
,
R. F.
,
2009
, “
Heat Transfer Measurements and Predictions for a Modern, High-Pressure, Transonic Turbine, Including Endwalls
,”
ASME J. Turbomach.
,
131
(
2
), p. 021001.10.1115/1.2985072
28.
Yao
,
J.
,
Gorrell
,
S. E.
, and
Wadia
,
A. R.
,
2010
, “
High-Fidelity Numerical Analysis of Per-Rev-Type Inlet Distortion Transfer in Multistage Fans—Part 1: Simulations With Selected Blade Rows
,”
ASME J. Turbomach.
,
132
(
4
), p.
041014
.10.1115/1.3148478
29.
Sharma
,
A.
,
Richards
,
S. K.
,
Wood
,
T. H.
, and
Shieh
,
C. M.
,
2009
, “
Numerical Prediction of Exhaust Fan-Tone Noise From High Bypass Aircraft Engines
,”
AIAA J.
,
47
(
12
), pp.
2866–2879
.10.2514/1.42208
30.
Hunter
,
S. D.
,
1998
, “
Source Term Mdoeling of Endwall Cavity Flow Effects on Gaspath Aerodynamics in an Axial Flow Turbine
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
31.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes
,”
14th Fluid and Plasma Dynamics Conference
,
Palo Alto, CA
, June 23–25,
AIAA
Paper No. 1981-1259.10.2514/6.1981-1259
32.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Pas Airfoils and Wings
,”
AIAA
Paper No. 1991-1596.10.2514/6.1991-1596
33.
Wilcox
,
D. C.
,
1988
, “
Re-Assessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
34.
Huber
,
F. W.
,
Johnson
,
P. D.
,
Sharma
,
O. P.
,
Staubach
,
J. B.
, and
Gaddis
,
S. W.
,
1996
, “
Performance Improvement Through Indexing of Turbine Airfoils—Part 1: Experimental Investigation
,”
ASME J. Turbomach.
,
118
(
4
), pp.
630
635
.10.1115/1.2840918
35.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2012
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME
Paper No. GT2012-69089.10.1115/GT2012-69089
36.
Kachel
,
C. E.
and
Denton
,
J. D.
,
2006
, “
Experimental and Numerical Investigation of the Unsteady Surface Pressure in a Three-Stage Model of an Axial High-Pressure Turbine
,”
ASME J. Turbomach.
,
128
(
2
), pp.
261
272
.10.1115/1.1860378
37.
Kopriva
,
J. E.
,
Laskowski
,
G. M.
, and
Shiekhi
,
R. H.
,
2013
, “
Assessment of High Pressure Cooled and Uncooled Turbine Blade Wakes Via RANS and URANS at Engine Scale Conditions
,”
ASME
Paper No. GT2013-94285.10.1115/GT2013-94285
You do not currently have access to this content.