Thermal and hydrodynamic flow field over a flat surface cooled with a single round inclined film cooling jet and fed by a plenum chamber is numerically investigated using large eddy simulation (LES) and validated with published measurements. The calculations are done for a freestream Reynolds number Re = 16,000, density ratio of coolant to freestream fluid ρj/ρ=2.0, and blowing ratio BR=ρjV/ρV=1.0. A short delivery tube with aspect ratio l/D=1.75 and 35 deg inclination is considered. The evolution of the Kelvin–Helmholtz (K-H), hairpin and counterrotating vortex pair (CVP) vortical structures are discussed to identify their origins. Modal analysis of the complete 3D flow and temperature field is carried out using a dynamic mode decomposition (DMD) technique. The modal frequencies are identified, and the specific modal contribution toward the cooling wall temperature fluctuation is estimated on the film cooling wall. The low and intermediate frequency modes associated with streamwise and hairpin flow structures are found to have the largest contribution (in-excess of 28%) toward the wall temperature (or cooling effectiveness) fluctuations. The high frequency Kelvin–Helmholtz mode contributes toward initial mixing in the region of film cooling hole away from the wall. The individual modal temperature fluctuations on the wall and their corresponding hydrodynamic flow structures are presented and discussed.

References

References
1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Trans.
,
7
, pp.
321
379
.10.1016/S0065-2717(08)70020-0
2.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid. Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
3.
Margason
,
R. J.
,
1993
, “
Fifty Years of Jet in Cross Flow Research
,”
AGARD Symposium on Computational and Experimental Assessment of Jets in Crossflow (AGARD-CP-534)
, Winchester, UK, April 19–22, pp.
1-1
1-41
.
4.
Lim
,
T. T.
,
New
,
H. T.
, and
Luo
,
S. C.
,
2001
, “
On the Development of Large-Scale Structures of Jet Normal to Cross Flow
,”
Phys. Fluids
,
13
(
3
), pp.
770
775
.10.1063/1.1347960
5.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid. Mech.
,
306
, pp.
111
144
.10.1017/S0022112096001255
6.
Berhe
,
M. K.
, and
Patankar
,
V.
,
1996
, “
A Numerical Study of Discrete-Hole Film Cooling
,” ASME Paper No. 96-WA/HT-8.
7.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
Impact of Film Cooling Jets on Turbine Aerodynamics Losses
,”
ASME J. Turbomach.
,
122
, pp.
537
545
.10.1115/1.1303818
8.
Ferguson
,
J. D.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
1998
, “
Performance of Turbulence Models and Near-Wall Treatments in Discrete Jet Film Cooling Simulations
,” ASME Paper No. 98-GT-438.
9.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
A.
,
2001
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Ann. NY Acad. Sci.
,
934
, pp.
110
125
.10.1111/j.1749-6632.2001.tb05846.x
10.
Iourokina
,
I. V.
, and
Lele
,
S. K.
,
2005
, “
Towards Large Eddy Simulation of Film Cooling Flows on Model Turbine Blade Leading Edge,
” 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10–13,
AIAA
Paper No. 2005-670. 10.2514/6.2005-670
11.
Iourokina
,
I. V.
, and
Lele
,
S. K.
,
2005
, “
Large Eddy Simulation of Film-Cooling Above the Flat Surface With a Large Plenum and Short Exit Holes
,” 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 9–12,
AIAA
Paper No. 2006-1102.10.2514/6.2006-1102
12.
Iourokina
,
I. V.
, and
Lele
,
S. K.
,
2006
, “
Large Eddy Simulation of Film Cooling Flow Above a Flat Plate From Inclined Cylindrical Holes
,”
ASME 2nd Joint U.S. European Fluid Engineering Summer Meeting
, Miami, FL, July 17–20,
ASME
Paper No. FEDSM2006-98282. 10.1115/FEDSM2006-98282
13.
Pete
,
Y. V.
, and
Lele
,
S. K.
,
2008
, “
Near Field of Film Cooling Jet Issued Into a Flat Plate Boundary Layer: LES Study
,”
ASME
Paper No. GT2008-50420. 10.1115/GT2008-50420
14.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulation of Leading Edge Film Cooling—Part II: Heat Transfer and Effect of Blowing Ratio
,”
ASME J. Turbomach.
,
130
(4), p.
041015
.10.1115/1.2812411
15.
Rozati
,
A.
, and
Tafti
,
D. K.
,
2008
, “
Effect of Coolant-Mainstream Blowing Ratio on Leading Edge Film Cooling Flow and Heat Transfer—LES Investigation
,”
Int. J. Heat Fluid Flow
,
29
, pp.
857
873
.10.1016/j.ijheatfluidflow.2008.02.007
16.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From and Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
, pp.
734
742
.10.1115/1.1625397
17.
Muldoon
,
F.
, and
Acharya
,
S.
,
2009
, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transf.
,
52
, pp.
3118
3127
.10.1016/j.ijheatmasstransfer.2009.01.030
18.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2007
, “
Direct Numerical Simulation of Round Turbulent Jets in Cross Flow
,”
J. Fluid. Mech.
,
574
, pp.
59
84
.10.1017/S0022112006004034
19.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2005
, “
Study of Trajectories of Jets in Crossflow Using Direct Numerical Simulations
,”
J. Fluid. Mech.
,
530
, pp.
81
100
.10.1017/S0022112005003514
20.
Renze
,
P.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows at Density Gradients
,”
Int. J. Heat Fluid Flow
,
29
, pp.
18
34
.10.1016/j.ijheatfluidflow.2007.07.010
21.
Renze
,
P.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large Eddy Simulation of Film Cooling Flows With Variable Density Jets
,”
Flow Turb. Comb.
,
80
(
1
), pp.
119
132
.10.1007/s10494-007-9080-8
22.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
, pp.
53
537
.10.1146/annurev.fl.25.010193.002543
23.
Lumley
,
J. L.
,
1970
,
Stochastic Tools in Turbulence
,
Academic Press, New York.
24.
Meyer
,
K. E.
,
Pedersen
,
J. M.
, and
Ozcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analysed With Proper Orthogonal Decomposition
,”
J. Fluid. Mech.
,
583
, pp.
199
227
.10.1017/S0022112007006143
25.
Schmidt
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid. Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
26.
Bagheri
,
S.
,
Schlatter
,
P.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2009
, “
Global Stability of a Jet in Crossflow
,”
J. Fluid. Mech.
,
624
, pp.
33
44
.10.1017/S0022112009006053
27.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
, pp.
442
449
.10.1115/1.2927894
28.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
, pp.
437
443
.10.1115/1.2927678
29.
Tafti
,
D. K.
,
2005
, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
.
Int. J. Heat Fluid Flow
,
26
, pp.
92
104
.10.1016/j.ijheatfluidflow.2004.07.002
30.
Tyagi
,
M.
,
2003
, “
Large Eddy Simulations of Complex Turbulent Flows
,” Ph.D. thesis, Department of Mechnical Engineering, Louisiana State University, Baton Rouge, LA.
31.
Haven
,
K.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid. Mech.
,
352
, pp.
27
64
.10.1017/S0022112097007271
32.
Rowley
,
C.
,
Mezic
,
W. W.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid. Mech.
,
641
, pp.
115
127
.10.1017/S0022112009992059
33.
Bagheri
,
S.
,
2010
,
Analysis and Control of Transitional Shear Flows Using Global Modes
,” Ph.D. thesis, Department of Mechanical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
34.
Chen
,
K. K.
,
Jonathan
,
H. T.
, and
Rowley
,
C. W.
,
2012
, “
Variants of Dynamic Mode Decomposition: Boundary Conditions, Koopman, and Fourier Analyses
,”
J. Nonlinear Sci.
,
22
(
6
), pp.
887
915
.10.1007/s00332-012-9130-9
You do not currently have access to this content.