The hypothesis, posed in Part I, that excessive end wall loss of high lift low pressure turbine (LPT) airfoils is due to the influence of high stagger angles on the end wall pressure distribution and not front loading is evaluated in a linear cascade at Re = 100,000 using both experimental and computational studies. A nominally high lift and high stagger angle front-loaded profile (L2F) with aspect ratio 3.5 is contoured at the end wall to reduce the stagger angle while maintaining the front loading. The contouring process effectively generates a fillet at the end wall, so the resulting airfoil is referred to as L2F-EF (end wall fillet). Although referred to as a fillet, this profile contouring process is novel in that it is designed to isolate the effect of stagger angle on end wall loss. Total pressure loss measurements downstream of the blade row indicate that the use of the lower stagger angle at the end wall reduces mixed out mass averaged end wall and passage losses approximately 23% and 10%, respectively. This is in good agreement with computational results used to design the contour which predict 18% and 7% loss reductions. The end wall flow field of the L2F and L2F-EF models is measured using stereoscopic particle image velocimetry (PIV) in the passage. These data are used to quantify changes in the end wall flow field due to the contouring. PIV results show that this loss reduction is characterized by reduced inlet boundary layer separation as well as a change in strength and location of the suction side horseshoe vortex (SHV) and passage vortex (PV). The end wall profile contouring also produces a reduction in all terms of the Reynolds stress tensor consistent with a decrease in deformation work and overall flow unsteadiness. These results confirm that the stagger angle has a significant effect on high-lift front-loaded LPT end wall loss. Low stagger profiling is successful in reducing end wall loss by limiting the development and migration of the low momentum fluid associated with the SHV and PV interaction.

References

References
1.
Lyall
,
M. E.
,
Clark
,
J. P.
,
King
,
P. I.
, and
Sondergaard
,
R.
,
2013
, “
End Wall Loss Reduction of High Lift Low Pressure Turbine Airfoils Through Use of Profile Contouring—Part I: Airfoil Design
,”
ASME
Paper No. GT2013-95000.10.1115/GT2013-95000
2.
McQuilling
,
M. W.
,
2007
, “
Design and Validation of a High Lift Low-Pressure Turbine Blade
,” Ph.D. thesis,
Wright State University
,
Dayton, OH
.
3.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2008
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME
Paper No. GT2008-50898.10.1115/GT2008-50898
4.
Korakianitis
,
T.
,
1993
, “
Prescribed-Curvature-Distribution Airfoils for the Preliminary Geometric Design of Axial-Turbomachinery Cascades
,”
ASME J. Turbomach.
,
115
, pp.
325
333
.10.1115/1.2929238
5.
Korakianitis
,
T.
, and
Papagiannidis
,
P.
,
1993
, “
Surface-Curvature-Distribution Effects on Turbine-Cascade Performance
,”
ASME J. Turbomach.
,
115
, pp.
334
340
.10.1115/1.2929239
6.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
, pp.
133
141
.10.1115/1.2835631
7.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils—Part I: Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537.10.1115/GT2007-27537
8.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2009
, “
Measurements of Secondary Losses in a High-Lift Front-Loaded Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2009-59677.10.1115/GT2009-59677
9.
Prümper
,
H.
,
1972
, “
Application of Boundary Layer Fences in Turbomachinery
,”
AGARD-AG-164
, pp.
311
331
.
10.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Non-Axisymmetric Turbine Endwall Design—Part I: Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
, pp.
278
285
.10.1115/1.555445
11.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. NY Acad. Sci.
,
934
, pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
12.
Zess
,
G. A.
, and
Thole
,
K. A.
,
2002
, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME J. Turbomach.
,
124
, pp.
167
175
.10.1115/1.1460914
13.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2003
, “
Leading Edge Modification Effects on Turbine Cascade Endwall Loss
,”
ASME
Paper No. GT2003-38898. 10.1115/GT2003-38898
14.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E.A.
,
2008
, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2008-51311.10.1115/GT2008-51311
15.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
ASME J. Mech. Eng.
,
75
, pp.
3
8
.
16.
Benedict
,
L.
, and
Gould
,
R.
,
1996
, “
Towards Better Uncertainty Estimates for Turbulence Statistics
,”
Exp. Fluids
,
22
, pp.
129
136
.10.1007/s003480050030
17.
Adrian
,
R.
,
Christensen
,
K.
, and
Liu
,
Z.
,
2000
, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Exp. Fluids
,
29
, pp.
275
290
.10.1007/s003489900087
18.
Benton
,
S.
,
Bons
,
J.
, and
Sondergaard
,
R.
,
2012
, “
Secondary Flow Loss Reduction Through Blowing for a High-Lift Front-Loaded Low Pressure Turbine Cascade
,”
ASME
Paper GT2012-68812.10.1115/GT2012-68812
19.
MacIsaac
,
G. D.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2012
, “
Measurements of Losses and Reynolds Stresses in the Secondary Flow Downstream of a Low-Speed Linear Turbine Cascade
,”
ASME J. Turbomach.
,
134
, p.
061015
.10.1115/1.4003839
20.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.10.1115/1.3262089
21.
Harrison
,
S.
,
1990
, “
Secondary Loss Generation in a Linear Cascade of High-Turning Turbine Blades
,”
ASME J. Turbomach.
,
112
, pp.
618
624
.10.1115/1.2927702
You do not currently have access to this content.