This paper presents the reasoning for and the design process of contouring a high lift front-loaded low pressure turbine (LPT) airfoil near the endwall to reduce the endwall loss. The test airfoil, L2F, was designed to the approximate gas angles with 38% larger pitchwise spacing than the widely studied Pack B airfoil. Being more front-loaded with a higher stagger angle, L2F is shown to produce more endwall losses than Pack B. It is suggested that the high endwall loss of L2F is due to the high stagger angle, not front-loading, as usually suggested in the literature. A procedure is presented to approximate the front-loading and stall resistance of L2F and obtain a low stagger version of that airfoil, designated as L2F-LS. A contoured airfoil is then designed by transitioning L2F into L2F-LS at the endwall to obtain a benefit from the reduced stagger angle at the endwall. Due to the contouring process generating a fillet, the contoured airfoil is referred to as L2F-EF (“endwall fillet”). Predictions in this paper suggest endwall loss reductions between 17% and 24% at Re = 100,000. Linear cascade experiments in Part II of this paper indicate that L2F-EF reduces endwall losses more than 20% compared to L2F. The overall conclusion is that the stagger angle has a significant effect on endwall loss and should be considered for designing high lift LPT airfoils at the endwall.

References

References
1.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
2.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2008
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME
Paper No. GT2008–50898.10.1115/GT2008-50898
3.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2009
, “
Measurements of Secondary Losses in a High-Lift Front-Loaded Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2009-59577.10.1115/GT2007-59577
4.
Wilson
,
D. G.
, and
Korakianitis
,
T.
,
1998
,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
5.
Lyall
,
M. E.
,
King
,
P. I.
,
Sondergaard
,
R.
,
Clark
,
J. P.
, and
McQuilling
,
M. W.
,
2012
, “
An Investigation of Reynolds Lapse Rate for Highly Loaded Low Pressure Turbine Airfoils With Forward and Aft Loading
,”
ASME J. Turbomach.
,
134
, p.
051028
.10.1115/1.4004753
6.
McQuilling
,
M. W.
,
2007
, “
Design and Validation of a High Lift Low-Pressure Turbine Blade
,” Ph.D. thesis, Wright State University, Dayton, OH.
7.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils—Part I: Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537.10.1115/GT2007-27537
8.
Sondergaard
,
R.
,
2008
, “
LPT Flow Control at AFRL
,”
AIAA
Paper No. 2008-4156.10.2514/6.2008-4156
9.
Weiss
,
A. P.
and
Fottner
,
L.
,
1995
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
, pp.
133
141
.10.1115/1.2835631
10.
Korakianitis
,
T.
and
Papagiannidis
,
P.
,
1993
, “
Surface-Curvature-Distribution Effects on Turbine-Cascade Performance
,”
ASME J. Turbomach.
,
115
, pp.
334
340
.10.1115/1.2929239
11.
Aerodynamic Solutions
,
2012
, Pleasanton, CA, http://www.aerodynamic-solutions.com/
12.
Clark
,
J. P.
,
Koch
,
P. J.
,
Ooten
,
M. K.
,
Johnson
,
J. J.
,
Dagg
,
J.
,
McQuilling
,
M. W.
,
Huber
,
F.
, and
Johnson
,
P. D.
,
2009
, “
Design of Turbine Components to Answer Research Questions in Unsteady Aerodynamics and Heat Transfer
,” AFRL Report No. AFRL-RZ-WP-TR-2009-2180.
13.
Casey
,
M. V.
,
1994
, “
Computational Methods for Preliminary Design and Geometry Definition in Turbomachinery
,”
Turbomachinery Design Using CFD
(
AGARD Lecture Series, Vol. 195
), pp.
1
22
.
14.
Dorney
,
D. J.
and
Davis
,
R. L.
,
1992
, “
Navier–Stokes Analysis of Turbine Blade Heat Transfer and Performance
,”
ASME J. Turbomach.
,
114
, pp.
795
806
.10.1115/1.2928033
15.
Praisner
,
T. J.
and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery—Part I: A Review and New Model Development
,”
ASME J. Turbomach.
,
129
, pp.
1
13
.10.1115/1.2366513
16.
Baldwin
,
B.
and
Lomax
,
H.
,
1978
, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,”
AIAA
Paper No. 78-257.10.2514/6.1978-257
17.
Vanderplaats
,
G. N.
,
1984
,
Numerical Optimization Techniques for Engineering Design: With Applications
,
McGraw-Hill
,
New York
.
18.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer-Verlag
,
New York
.
19.
Wilcox
,
D.C.
,
1998
,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries Inc.
,
La Cañada, CA
.
20.
Schlichting
,
H.
and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
8th ed.
,
Springer-Verlag
,
New York
.
21.
Lyall
,
M. E.
,
2012
, “
Effects of Front-Loading and Stagger Angle on Endwall Losses of High Lift Low Pressure Turbine Vanes
,” Ph.D. dissertation, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH.
22.
Blanco
,
E.
,
Hodson
,
H. P.
,
Vazquez
,
R.
, and
Torre
,
D.
,
2003
, “
Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between Pressure Surface Separation and Endwall Flows
,”
Proc. Inst. Mech. Eng., Part A
,
217
, pp.
433
441
.10.1243/095765003322315496
23.
Sharma
,
O. P.
and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.10.1115/1.3262089
You do not currently have access to this content.