An experimental study is conducted on a simulated internal cooling channel of a turbine airfoil using angled grooves and combination of grooves-ribs to enhance the heat transfer from the wall. The grooves are angled at 45 deg to the mainstream flow direction and combinations of four different geometries are studied that include (1) angled grooves with a pitch, p/δ = 10, (2) angled groove with a larger pitch, p/δ = 15, (3) combination of angled groove and 45 deg angled rib, and (4) combination of angled groove with transverse rib. Transient liquid crystal experiments are conducted for a Reynolds number range of 13,000–55,000, and local and averaged heat transfer coefficient values are presented for all the geometries. Pressure drops are measured between the inlet and the exit of the grooved channel and friction factors are calculated. The combination of the angled groove and 45 deg angled rib provided the highest performance factor of the four cases considered, and these values were higher or comparable to among the best-performing rib geometries (45 deg broken ribs) commonly used in gas turbine airfoils.

References

References
1.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
,
106
, pp.
774
784
.10.1115/1.3246751
2.
Han
,
J. C.
and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transf.
,
31
, pp.
183
195
.10.1016/0017-9310(88)90235-9
3.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1989
, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators
,”
Int. J. Heat Mass Transf.
,
32
, pp.
1619
1630
.10.1016/0017-9310(89)90044-6
4.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Ou
,
S.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transf.
,
35
, pp.
2891
2903
.10.1016/0017-9310(92)90309-G
5.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W.M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surface
,”
Int. J. Heat Mass Transf.
,
21
, pp.
1143
1159
.10.1016/0017-9310(78)90113-8
6.
Taslim
,
M. E.
,
Li
,
T.
, and
Kercher
,
D. M.
,
1996
, “
Experimental Heat Transfer and Friction in Channels Roughened With Angled, V-Shaped, and Discrete Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
118
, pp.
20
28
.10.1115/1.2836602
7.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
,
113
, pp.
590
596
.10.1115/1.2927730
8.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1992
, “
High Performance Heat Transfer Ducts With Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transf.
,
35
, pp.
513
523
.10.1016/0017-9310(92)90286-2
9.
Liou
,
T. M.
,
Chen
,
C. C.
, and
Tsai
,
T. W.
,
2000
, “
Heat Transfer and Fluid Flow in a Square Duct With 12 Different Shaped Vortex Generators
,”
ASME J. Turbomach.
,
122
, pp.
327
335
.10.1115/1.555449
10.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR = 4:1)
,”
ASME J. Turbomach.
,
126
, pp.
604
614
.10.1115/1.1791286
11.
Han
,
J. C.
,
Huang
,
J. J.
, and
Lee
,
C. P.
,
1993
, “
Augmented Heat Transfer in Square Channels With Wedge-Shaped and Delta-Shaped Turbulence Promoters
,”
J. Enhanced Heat Transf.
,
1
(1), pp.
37
52
.
12.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
, pp.
337
362
.10.2514/2.1964
13.
Zhang
,
Y. M.
,
Gu
,
W. Z.
, and
Han
,
J. C.
,
1994
, “
Heat Transfer and Friction in Rectangular Channels With Ribbed or Ribbed-Grooved Walls
,”
ASME J. Heat Transfer
,
116
, pp.
58
65
.10.1115/1.2910884
14.
Lorenz
,
S.
,
Mukomilow
,
D.
, and
Leiner
,
W.
,
1995
, “
Distribution of the Heat Transfer Coefficient in a Channel With Periodic Transverse Grooves
,”
Exp. Thermal and Fluid Sci.
,
11
, pp.
234
242
.10.1016/0894-1777(95)00055-Q
15.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
,
2008
, “
Numerical Study on Heat Transfer of Turbulent Channel Flow Over Periodic Grooves
,”
Int. Commun. Heat Mass Transfer
,
35
, pp.
844
852
.10.1016/j.icheatmasstransfer.2008.03.008
16.
Bilen
,
K.
,
Cetin
,
M.
,
Gul
,
H.
, and
Balta
,
T.
,
2009
, “
The Investigation of Groove Geometry Effect on Heat Transfer for Internally Grooved Ducts
,”
Appl. Thermal Eng.
,
29
, pp.
753
761
.10.1016/j.applthermaleng.2008.04.008
17.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
,
2009
, “
Thermal Characteristics of Turbulent Rib-Grooved Channel Flows
,”
Int. Commun. Heat Mass Transfer
,
36
, pp.
705
711
.10.1016/j.icheatmasstransfer.2009.03.025
18.
Vedula
,
R. J.
, and
Metzger
,
D. E.
,
1991
, “
A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three-Temperature Convection Situations
,” ASME Paper No. 91-GT-345.
19.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Bosch
,
G.
,
1991
, “
Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement
,”
ASME J. Turbomach.
,
113
, pp.
52
59
.10.1115/1.2927737
20.
Vogel
,
G.
, and
Weigand
,
B.
,
2001
, “
A New Evaluation Method for Transient Liquid Crystal Experiments
,”
ASME National Heat Transfer Conference
(NHTC2001), Anaheim, CA, June 10–12, ASME Paper No. NHTC2001-20250.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME J. Mech. Eng.
,
75
, pp.
3
8
.
22.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
3rd ed.
,
DCW Industries
, La Cañada, CA.
23.
FLUENT 6.3 User's Guide, 2006, Fluent Inc., New York.
24.
Acharya
,
S.
,
Baliga
,
B.
,
Karki
,
K.
,
Murthy
,
J.
,
Prakash
,
C.
, and
Vanka
,
S. P.
,
2007
, “
Pressure-Based Finite Volume Methods in Computational Fluid Dynamics
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
407
424
.10.1115/1.2716419
25.
Dittus
,
F. W.
, and
Boelter
,
L. M. K. G.
,
1930
,
Publications on Engineering
, Vol.
2
,
University of California at Berkeley
,
Berkeley, CA
, pp.
443
461
.
26.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
3rd ed.
,
McGraw-Hill
,
New York
.
27.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
, pp.
715
726
.10.1016/0017-9310(81)90015-6
You do not currently have access to this content.