Experiments are conducted to investigate the effect of the prehistory in the aerodynamic performance of a three-dimensional nozzle guide vane with a hub leading edge contouring. The performance is determined with two pneumatic probes (five hole and three hole) concentrating mainly on the end wall. The investigated vane is a geometrically similar gas turbine vane for the first stage with a reference exit Mach number of 0.9. Results are compared for the baseline and filleted cases for a wide range of operating exit Mach numbers from 0.5 to 0.9. The presented data includes loading distributions, loss distributions, fields of exit flow angles, velocity vector, and vorticity contour, as well as mass-averaged loss coefficients. The results show an insignificant influence of the leading edge fillet on the performance of the vane. However, the prehistory (inlet condition) affects significantly in the secondary loss. Additionally, an oil visualization technique yields information about the streamlines on the solid vane surface, which allows identifying the locations of secondary flow vortices, stagnation line, and saddle point.

References

References
1.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Power
,
107
, pp.
248
257
.10.1115/1.3239704
2.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
3.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1995
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blade
,” ASME Paper No. 95-GT-7.
4.
Eckerle
,
W. A.
, and
Langston
,
L. S.
,
1987
, “
Horseshoe Vortex Formation Around a Cylinder
,”
ASME J. Turbomach.
,
109
, pp.
278
286
.10.1115/1.3262098
5.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Prediction of Endwall Losses and Secondary Flows in Axial Flow Within a Turbine Cascade Passage
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.10.1115/1.3262089
6.
Sauer
,
H.
, and
Wolf
,
H.
,
1997
, “
Influencing the Secondary Flow in Turbine Cascades by the Modification of the Blade Leading
,”
Proceedings of the European Conference of Turbomachinery
, Antwerp, Belgium, March 5–7.
7.
Sauer
,
H.
,
Mueller
,
R.
, and
Vogeler
,
K.
,
2000
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,” ASME Paper No. 2000-GT-0473.
8.
Zess
,
G. A.
, and
Thole
,
K. A.
,
2001
, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME
Paper No. GT2001-0404.
9.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2003
, “
Leading Edge Modification Effects on Turbine Cascade Endwall Loss
,”
ASME
Paper No. GT2003-38898.10.1115/GT2003-38898
10.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2004
, “
An Experimental Investigation of Contoured Leading Edges for Secondary Flow Loss Reduction
,”
ASME
Paper No. GT2004-53964.10.1115/GT2004-53964
11.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
,
2005
, “
Experimental Investigation of Flow Structure and Nusselt Number in a Low Speed Linear Blade Passage With and Without Leading Edge Fillets
,”
ASME J. Heat Transfer
,
127
, pp.
499
512
.10.1115/1.1865218
12.
Saha
,
A. K.
,
Mahmood
,
G. I.
, and
Acharya
,
S.
,
2006
, “
The Role of Leading-Edge Contouring on End-Wall Flow and Heat Transfer: Computations and Experiments
,”
ASME
Paper No. GT2006-91318.10.1115/GT2006-91318
13.
Mahmood
,
G. I.
, and
Acharya
,
S.
,
2007
, “
Experimental Investigation of Secondary Flow Structure in a Blade Passage With and Without Leading Edge Fillets
,”
ASME J. Fluids Eng.
,
129
, pp.
253
262
.10.1115/1.2427075
14.
Devenport
,
W. J.
,
Agarwal
,
N. K.
,
Dewitz
,
M. B.
,
Simpson
,
R. L.
, and
Poddar
,
K.
,
1990
, “
Effects of a Fillet on the Flow Past a Wing-Body Junction
,”
AIAA J.
,
28
(
12
), pp.
2017
2024
.10.2514/3.10517
15.
Shi
,
Y.
,
Li
,
J.
, and
Feng
,
Z.
,
2010
, “
Influence of Rotor Blade Fillets on Aerodynamic Performance of Turbine Stage
,”
ASME
Paper No. GT2010-23721.10.1115/GT2010-23721
16.
Saha
,
R.
,
Mamaev
,
B.
,
Fridh
,
J.
,
Annerfeldt
,
M.
, and
Fransson
,
T.
,
2012
, “
Experimental Studies of Leading Edge Contouring on Secondary Losses in Transonic Turbines
,”
ASME
Paper No. GT2012-68497.10.1115/GT2012-68497
17.
Herzig
,
H. Z.
, and
Hansen
,
A. G.
,
1955
, “
Visualisation Studies of Secondary Flow With Applications to Turbomachines
,”
Trans. ASME
,
77
(
3
), pp.
249
266
.
18.
Barringer
,
M. D.
,
Richard
,
O. T.
,
Walter
,
J. P.
,
Stitzel
,
S. M.
, and
Thole
,
K. A.
,
2002
, “
Flow Field Simulation of a Turbine Combustor
,”
ASME J. Turbomach.
,
124
(
3
), pp.
508
516
.10.1115/1.1475742
19.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2002
, “
Effect of Nonuniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
,
124
(
4
), pp.
623
631
.10.1115/1.1505849
20.
Deich
,
M. E.
,
1961
, “
Technical Gas Dynamics
,”
2nd ed.
, Gosenergoizdat, Moscow (in Russian).
21.
Putz
,
F. M.
,
2010
, “
Load, Secondary Flow and Turbulence Measurements on Film Cooled Nozzle Guide Vanes in a Transonic Annular Sector Cascade
,” M.Sc. thesis, Royal Institute of Technology, Stockholm, Sweden.
22.
Schäfer
,
L.
,
2009
, “
A Numerical Parametric Study of an Annular Sector Cascade for Experimental Aerodynamic Testing
,” KTH Royal Institute of Technology, Department of Energy Technology, Division of Heat and Power, Stockholm, Sweden, Study Project Report No. 2009:09 EKV.
23.
Mitrus
,
A.
,
2012
, “
Numerical Investigation of Blade Leading Edge Contouring by Fillet and Baseline Case of a Turbine Vane: A Comparative Study of the Effect on Secondary Flow
,” M.Sc. thesis, Royal Institute of Technology, Stockholm, Sweden.
You do not currently have access to this content.