Efforts to reduce blade count and avoid boundary layer separation have led to low-pressure turbine airfoils with significant increases in loading as well as front-loaded pressure distributions. These features have been independently shown to increase losses within the secondary flow field at the end wall. Compound angle blowing from discrete jets on the blade suction surface near the end wall has been shown to be effective in reducing these increased losses and enabling the efficient use of highly loaded blade designs. In this study, experiments are performed on the front loaded L2F low-pressure turbine airfoil in a linear cascade. The required mass flow is reduced by decreasing the hole count from previous configurations and from the introduction of unsteady blowing. The effects of pulsing frequency and duty cycle are investigated using phase-locked stereo particle image velocimetry to demonstrate the large scale movement and hysteresis behavior of the passage vortex interacting with the pulsed jets. Total pressure loss contours at the cascade outlet demonstrate that the efficiency benefit is maintained with the use of unsteady forcing.

References

References
1.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezvici
,
D. C.
,
Popovic
, I
.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2013
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME J. Turbomach.
,
135
(6), p.
061007
. 10.1115/1.4024796
2.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
(
1
), pp.
133
141
.10.1115/1.2835631
3.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537. 10.1115/GT2007-27537
4.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2006
, “
An Empirical Prediction Method for Secondary Losses in Turbines—Part II: A New Secondary Loss Correlation
,”
ASME J. Turbomach.
,
128
(
2
), pp.
281
291
.10.1115/1.2162594
5.
Sauer
,
H.
,
Müller
,
R.
, and
Vogeler
,
K.
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,”
ASME J. Turbomach.
,
123
(
2
), pp.
207
213
.10.1115/1.1354142
6.
Chung
,
J.
,
Simon
,
T.
, and
Buddhavarapu
,
J.
,
1991
, “
Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence
,” ASME Paper No. 91-GT-45.
7.
Harvey
,
N.
,
Rose
,
M.
,
Shahpar
,
S.
,
Taylor
,
M.
,
Hartland
,
J.
, and
Gregory-Smith
,
D.
,
2000
, “
Non-Axisymmetric Turbine End Wall Design: Part I—Three-Dimensional Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.10.1115/1.555445
8.
Lyall
,
M. E.
,
King
,
P. I.
, and
Sondergaard
,
R.
,
2013
, “
Endwall Loss and Mixing Analysis of a High Lift Low Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
135
(
5
), p.
051006
.10.1115/1.4007801
9.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2008
, “
Control of Three-Dimensional Separations in Axial Compressors by Tailored Boundary Layer Suction
,”
ASME J. Turbomach.
,
130
(
1
), p.
011004
.10.1115/1.2749294
10.
Bloxham
,
M. J.
, and
Bons
,
J. P.
,
2010
, “
Combined Blowing and Suction to Control Both Midspan and Endwall Losses in a Turbomachinery Passage
,”
ASME
Paper No. GT2010-23552. 10.1115/GT2010-23552
11.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
,
2000
, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
,
122
(
4
), pp.
651
658
.10.1115/1.1311286
12.
Nerger
,
D.
,
Saathoff
,
H.
,
Radespiel
,
R.
,
Gümmer
,
V.
, and
Clemen
,
C.
,
2012
, “
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
,”
ASME J. Turbomach.
,
134
(
2
), p.
021010
.10.1115/1.4003254
13.
Hecklau
,
M.
,
Zander
,
V.
,
Peltzer
,
I.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2010
, “
Experimental Approaches on a Highly Loaded Compressor Cascade
,”
Active Flow Control II
, Vol.
108
,
R.
King
, ed.,
Springer
,
New York
, pp.
171
186
.
14.
Hecklau
,
M.
,
Zander
, V
.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2010
, “
Active Secondary Flow Control on a Highly Loaded Compressor Cascade by Periodically Pulsating Jets
,”
New Results in Numerical and Experimental Fluid Mechanics VII
, Vol.
112
,
A.
Dillmann
,
G.
Heller
,
M.
Klaas
,
W.
Nitsche
,
W.
Schröder
, and
H.-P.
Kreplin
, eds.,
Springer
,
New York
, pp.
199
207
.
15.
Hecklau
,
M.
,
van Rennings
,
R.
,
Zander
,
V.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2011
, “
Particle Image Velocimetry of Active Flow Control on a Compressor Cascade
,”
Exp. Fluids
,
50
, pp.
799
811
.10.1007/s00348-010-0895-z
16.
Benton
,
S.
,
Bons
,
J. P.
, and
Sondergaard
,
R.
,
2013
, “
Secondary Flow Loss Reduction Through Blowing for a High-Lift Front-Loaded Low Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
135
(
2
), p.
021020
.10.1115/1.4007531
17.
McQuilling
,
M.W.
,
2007
, “
Design and Validation of a High-Lift Low-Pressure Turbine Blade
,” Ph.D. thesis, Wright State University, Dayton, OH.
18.
Lyall
,
M. E.
,
King
,
P. I.
,
Sondergaard
,
R.
,
Clark
,
J. P.
, and
McQuilling
,
M. W.
,
2012
, “
An Investigation of Reynolds Lapse Rate for Highly Loaded Low Pressure Turbine Airfoils With Forward and AFT Loading
,”
ASME J. Turbomach.
,
134
(
5
), p.
051035
.10.1115/1.4004826
19.
Crow
,
S. C.
,
1970
, “
Stability Theory for a Pair of Trailing Vortices
,”
AIAA J.
,
8
(
12
), pp.
2172
2179
.10.2514/3.6083
20.
Bae
,
J.
,
Breuer
,
K. S.
, and
Tan
,
C. S.
,
2004
, “
Periodic Unsteadiness of Compressor Tip Clearance Vortex
,”
ASME
Paper No. GT2004-53015. 10.1115/GT2004-53015
You do not currently have access to this content.