The accurate prediction of turbines performance and flow fields requires the assessment of unsteady numerical simulations. This paper presents a numerical study on the interaction between a single-stage high-pressure turbine and the first vane row of a low-pressure turbine. It focuses on the simulation of the flow within the interturbine duct and the loss generated in the downstream low-pressure vane. Former experiments provided steady and unsteady measurements in the interturbine duct and after the low-pressure vane. A 3D unsteady Reynolds-averaged Navier–Stokes (URANS) approach with phase-lagged boundary conditions is used to characterize the unsteady periodic effects in the interturbine channel and downstream in the low-pressure vane. For the numerical study, two different configurations are considered: a single-stage high-pressure turbine configuration and a high-pressure rotor coupled with a low-pressure vane. For the second one, two inlet boundary conditions are implemented upstream of the rotor: a circumferentially uniform boundary condition and a circumferentially nonuniform rotating boundary condition. The resulting flow fields are compared within the intermediate duct. A harmonic Fourier analysis is carried out to underline the effects of the high-pressure rotor. An unsteady Adamczyk decomposition of the flow field within the duct gives the influence of the different components and the levels of unsteadiness. Comparisons with experimental data show a reasonable good agreement.

References

References
1.
Lavagnoli
,
S.
,
Yasa
,
T.
,
Paniagua
,
G.
,
Castillon
,
L.
, and
Duni
,
S.
,
2012
, “
Aerodynamic Analysis of an Innovative Low Pressure Vane Placed in an S-Shape Duct
,”
ASME J. Turbomach.
,
134
(
1
), p.
011013
.10.1115/1.4003241
2.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2003
, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine—Part I: Vane-Rotor and Rotor-Vane Interaction
,”
ASME J. Turbomach.
,
125
(
1
), pp.
33
-
39
.10.1115/1.1508386
3.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2003
, “
Wake, Shock, and Potential Field Interactions in a 1.5 Stage Turbine—Part II: Vane-Vane Interaction and Discussion of Results
,”
ASME J. Turbomach.
,
125
(
1
), pp.
40
47
.10.1115/1.1508387
4.
Trébinjac, I., Charbonnier, D., and Leboeuf, F.
2005
, “
Unsteady Rotor-Stator Interaction in High Speed Compressor and Turbine Stages
,”
J. Therm. Sci.
,
14
(
4
), pp. 289–297.10.1007/s11630-005-0047-6
5.
Praisner
,
T. J.
,
Grover
,
E.
,
Mocanu
,
R.
,
Jurek
,
R.
, and
Gacek
,
R.
,
2010
, “
Predictions of Unsteady Interactions Between Closely Coupled HP and LP Turbines With Co- and Counter-Rotation
,”
ASME
Paper No. GT2010-2368.10.1115/GT2010-2368
6.
Yao
,
J.
, and
Carson
,
S.
,
2006
, “
HPT/LPT Interaction and Flow Management in the Inter-Turbine Space of a Modern Axial Flow Turbine
,”
ASME
Paper No. GT2006-90636.10.1115/GT2006-90636
7.
Rai
,
M.
,
1989
, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction; Part I—Methodology
,”
J. Propul.
,
5
(
3
), pp.
305
311
.10.2514/3.23154
8.
Erdos
,
J.
,
Alzner
,
E.
,
Kalben
,
P.
,
McNally
,
W.
, and
Slutsky
,
S.
,
1975
, “
Time-Dependent Transonic Flow Solutions for Axial Turbomachinery
,”
Aerodyn. Anal. Req. Adv. Comp.
,
SP-347
, pp.
587
621
.
9.
Denton
,
J.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME
Paper No. GT2012-69173.10.1115/GT2012-69173
10.
Pullan
,
G.
,
2006
, “
Secondary Flows and Loss Caused by Blade Row Interaction in a Turbine Stage
,”
ASME J. Turbomach.
,
128
, pp.
484
491
.10.1115/1.2182001
11.
Davis
,
R.
,
Yao
,
J.
,
Clark
,
J.
,
Stetson
,
G.
,
Alonso
,
J.
,
Jameson
,
A.
,
Haldeman
,
C.
, and
Dunn
,
M.
,
2004
, “
Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components
,”
Int. J. Rotat. Mach.
,
10
(
6
), pp.
495
506
.10.1155/S1023621X04000491
12.
Adamczyk
,
J. J.
,
1985
, “
Model Equation for Simulating Flows in Multistage Turbomachinery
,” ASME Paper No. 85-GT-226.
13.
Tartousi
,
H.
,
2011
, “
Simulation numérique du comportement des compresseurs et des turbines automobiles
,” Ph.D. thesis, École Centrale de Lyon, Lyon, France, pp. 111–119.
14.
Gourdain
,
N.
, and
Leboeuf
,
F.
,
2009
, “
Unsteady Simulation of an Axial Compressor Stage With Casing and Blade Passive Treatments
,”
ASME J. Turbomach.
,
131
(
2
), p.
021013
.10.1115/1.2988156
15.
Cambier
,
L.
,
Gazaix
,
M.
,
Heib
,
S.
,
Plot
,
S.
,
Poinot
,
M.
, and
Montagnac
,
M.
,
2011
, “
An Overview of the Multi-Purpose elsA Flow Solver
,”
Onera J. Aerosp. Lab
Journal, 2(CFD Platforms and Coupling), pp. 1–15.
16.
He
,
L.
,
Fransson
,
T.
,
Liu
,
F.
,
Hynes
,
T.
,
Prasad
,
D.
and
Hah
,
C.
,
2008
, “
Harmonic Solution of Unsteady Flow Around Blades With Separation
,”
AIAA J.
,
46
(
6
), pp.
1299
1307
.10.2514/1.28656
17.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
,
2002
, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor Stator Interaction Computations
,”
J. Propul. Power
,
18
(
6
) pp. 1139–1152.10.2514/2.6065
18.
Wlassow
,
F.
,
Leboeuf
,
F.
,
Leroy
,
G.
,
Gourdain
,
N.
, and
Ngo Boum
,
G.
,
2012
, “
Numerical Investigation of High-Pressure Turbine Environment Effects on the Prediction of Aerothermal Performances
,”
ASME
Paper No. GT2012-68143.10.1115/GT2012-68143
19.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “Axial Flow Compressor Noise Studies,”
SAE
Technical Paper 620532.10.4271/620532
20.
Gougeon
,
P.
,
Ngo Boum
,
G.
, and
Leboeuf
,
F.
,
2013
, “
Aerodynamic Interactions Between a High Pressure Turbine and the First Low Pressure Stator
,”
ASME
Paper No. GT2013-95725.10.1115/GT2013-95725
You do not currently have access to this content.