The paper presents a new setup for the two-stage two-spool facility located at the Institute for Thermal Turbomachinery and Machine Dynamics (ITTM) of Graz University of Technology. The rig was designed in order to simulate the flow behavior of a transonic turbine followed by a counter-rotating low pressure (LP) stage like the spools of a modern high bypass aeroengine. The meridional flow path of the machine is characterized by a diffusing S-shaped duct between the two rotors. The role of turning struts placed into the mid turbine frame is to lead the flow towards the LP rotor with appropriate swirl. Experimental and numerical investigations performed on the setup over the last years, which were used as baseline for this paper, showed that wide chord vanes induce large wakes and extended secondary flows at the LP rotor inlet flow. Moreover, unsteady interactions between the two turbines were observed downstream of the LP rotor. In order to increase the uniformity and to decrease the unsteady content of the flow at the inlet of the LP rotor, the mid turbine frame was redesigned with two zero-lifting splitters embedded into the strut passage. In this first part of the paper the design process of the splitters and its critical points are presented, while the time-averaged field is discussed by means of five-hole probe measurements and oil flow visualizations. The comparison between the baseline case and the embedded design configuration shows that the new design is able to reduce the flow gradients downstream of the turning struts, providing a more suitable inlet condition for the low pressure rotor. The improvement in the flow field uniformity is also observed downstream of the turbine and it is, consequently, reflected in an enhancement of the LP turbine performance. In the second part of this paper the influence of the embedded design on the time-resolved field is investigated.

References

References
1.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1998
, “
Flow Development Through Inter-Turbine Diffusers
,”
ASME J. Turbomach.
,
120
, pp.
298
304
.10.1115/1.2841406
2.
Dominy
,
R. G.
, and
Kirkham
,
D. A.
,
1996
, “
The Influence of Blade Wakes on the Performance of Inter-Turbine Diffusers
,”
ASME J. Turbomach.
,
118
, pp.
347
352
.10.1115/1.2836649
3.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
, pp.
249
279
.10.1016/j.paerosci.2011.01.002
4.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2004
, “
The Effect of an Upstream Turbine on a Low-Aspect Ratio Vane
,”
Proceedings of ASME Turbo Expo 2004
, Vienna, Austria, June 14–17,
ASME
Paper No. GT2004-54017.10.1115/GT2004-54017
5.
Marn
,
A.
,
Göttlich
,
E.
,
Cadrecha
,
D.
, and
Pirker
,
H. P.
,
2009
, “
Shorten the Intermediate Turbine Duct Length by Applying an Integrated Concept
,”
ASME J. Turbomach.
,
131
(
4
), p.
041014
.10.1115/1.3070578
6.
Santner
,
C.
,
Paradiso
,
B.
,
Malzacher
,
F.
,
Hoeger
,
M.
,
Hubinka
,
J.
, and
Göttlich
,
E.
,
2011
, “
Evolution of the Flow Through a Turning Mid Turbine Frame Applied Between a Transonic HP Turbine Stage and a Counter-Rotating LP Turbine
,”
Proceedings of 9th European Turbomachinery Conference
, Istanbul, Turkey, March 21–25, Paper No. 110.
7.
Paradiso
,
B.
,
Santner
,
C.
,
Hubinka
,
J.
, and
Göttlich
,
E.
,
2011
, “
Turning Mid Turbine Frame Behaviour for Different HP Turbine Outflow Conditions
,”
Proceedings of ASME Turbo Expo 2011
, Vancouver, BC, Canada, June 6–10,
ASME
Paper No. GT2011-46502.10.1115/GT2011-46502
8.
Pratt-&-Whitney
, “
Pure Power pw1000g Geared Turbofan Engine
,” http://www.purepowerengine.com/
9.
Seda
,
J.
,
2004
, “
Aircraft Engine With Inter-Turbine Engine Frame
,” U.S. Patent No. 6708482 b2, http://www.freepatentsonline.com/6708482.html
10.
Lengani
,
D.
,
Santner
,
T.
,
Spataro
,
R.
,
Paradiso
,
B.
, and
Göttlich
,
E.
,
2012
, “
Experimental Investigation of the Unsteady Flow Field Downstream of a Counter-Rotating Two-Spool Turbine Rig
,”
Proceedings of ASME Turbo Expo 2012
, Copenhagen, Denmark, June 11–15,
ASME
Paper No. GT2012-68583.10.1115/GT2012-68583
11.
Lengani
,
D.
,
Santner
,
C.
,
Spataro
,
R.
, and
Göttlich
,
E.
,
2012
, “
Analysis Tools for the Unsteady Interactions in a Counter-Rotating Two-Spool Turbine Rig
,”
Experiment. Therm. Fluid Sci.
,
42
, pp.
248
257
.10.1016/j.expthermflusci.2012.05.010
12.
Lavagnoli
,
S.
,
Yasa
,
T.
,
Paniagua
,
G.
,
Duni
,
S.
, and
Castillon
,
L.
, “
Aerodynamic Analysis of an Innovative Low Pressure Vane Placed in a S-Shape Duct
,”
ASME J. Turbomach.
,
134
(
1
), p.
011013
.10.1115/1.4003241
13.
Yasa
,
T.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2011
, “
Impact of a Multi-Splitter Vane Configuration on the Losses in a 1.5 Turbine Stage
,”
Proc. IMechE
,
225
, pp.
964
974
.10.1177/0957650911409843
14.
Santner
,
C.
,
Göttlich
,
E.
,
Wallin
,
F.
, and
Hoeger
,
M.
,
2011
, “
Experimental Investigation of Turning Mid Turbine Frame Designs
,”
Proceedings of ISABE 2011
, Gothenburg, Sweden, June 11–15, ISABE Paper No. ISABE-2011-1710.
15.
Spataro
,
R.
,
Santner
,
C.
,
Lengani
,
D.
, and
Göttlich
,
E.
,
2012
, “
On the Flow Evolution Through a LP Turbine With Wide-Chord Vanes in an S-Shaped Channel
,”
Proceedings of ASME Turbo Expo 2012
, Copenhagen, Denmark, June 11–15,
ASME
Paper No. GT2012-68178.10.1115/GT2012-68178
16.
Spataro
,
R.
,
Göttlich
,
E.
,
Santner
,
C.
, and
Heitmeir
,
F.
,
2013
, “
A Numerical Comparison on the Aerodynamic Performances of a Two-Stage Two-Spool Turbine Facility Predicted by Steady and Unsteady Simulations
,”
Proceedings of 10th European Turbomachinery Conference
, Lappenranta, Finland, April 21–25, Paper No. 39.
17.
Lengani
,
D.
,
Selic
,
T.
,
Spataro
,
R.
,
Marn
,
A.
, and
Göttlich
,
E.
,
2012
, “
Analysis of the Unsteady Flow Field in the Turbines by Means of Modal Decomposition
,”
Proceedings of ASME Turbo Expo 2012
, Copenhagen, Denmark, June 11–15,
ASME
Paper No. GT2012-68582.10.1115/GT2012-68582
18.
Spataro
,
R.
,
Göttlich
,
E.
,
Lengani
,
D.
,
Faustmann
,
C.
, and
Heitmeir
,
F.
,
2013
, “
Development of a Turning Mid Turbine Frame With Embedded Design—Part II: Unsteady Measurements
,”
Proceedings of ASME Turbo Expo 2013
, San Antonio, TX, June 11–15,
ASME
Paper No. GT2013-95280.10.1115/GT2013-95280
19.
Faustmann
,
C.
,
Lengani
,
D.
,
Spataro
,
R.
,
Marn
,
A.
,
Göttlich
,
E.
, and
Heitmeir
,
F.
,
2013
, “
Experimental Investigation of the Noise Generation and Propagation for Different Turning Mid Turbine Frame Setups in a Two-Stage Two-Spool Test Turbine
,”
Proceedings of ASME Turbo Expo 2013
, San Antonio, TX, June 3–7,
ASME
Paper No. GT2013-95698.10.1115/GT2013-95698
20.
Erhard
,
J.
, and
Gehrer
,
A.
,
2000
, “
Design and Construction of a Transonic Test-Turbine Facility
,”
Proceedings of ASME Turbo Expo 2000
, Munich, Germany, May 8–11, Paper No. 2000-GT-480.
21.
Hubinka
,
J.
,
Santner
,
C.
,
Paradiso
,
B.
,
Malzacher
,
F.
, and
Göttlich
,
E.
,
2009
, “
Design and Construction of a Two Shaft Test Turbine for Investigation of Mid Turbine Frame Flows
,”
Proceedings of ISABE 2009
, Montreal, QC, Canada, ASME Paper No. ISABE-2009-1293.
22.
Hubinka
,
J.
,
Paradiso
,
B.
,
Santner
,
C.
,
Pirker
,
H. P.
, and
Göttlich
,
E.
,
2011
, “
Design and Operation of a Two Spool High Pressure Test Turbine Facility
,”
Proceeding of the 9th ETC Conference
, Istanbul, Turkey, March 21–25, pp.
1531
1540
.
23.
Dénos
,
R.
, and
Paniagua
,
G.
, eds.,
2005
,
Effects of Aerodynamic Unsteadiness in Axial Turbomachines
(
VKI Lecture Series), von Karman Institute for Fluid Dynamics
,
Rhode-Saint-Genese, Belgium
, LS 2005-03.
24.
Persico
,
G.
,
Mora
,
A.
,
Gaetani
,
P.
, and
Savini
,
M.
,
2010
, “
Unsteady Aerodynamics of a Low Aspect Ratio Turbine Stage: Modelling Issues and Flow Physics
,”
Proceedings of ASME Turbo Expo 2010
, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22927.10.1115/GT2010-22927
25.
Dénos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
, V
.
, and
Martelli
,
F.
,
2001
, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
123
, pp.
81
89
.10.1115/1.1314607
26.
Urbassik
,
R. M.
,
Wolff
,
J. M.
, and
Polanka
,
M. D.
,
2006
, “
Unsteady Aerodynamics and Interactions Between a High-Pressure Turbine Vane and Rotor
,”
ASME J. Turbomach.
,
128
, pp.
35
42
.10.1115/1.2098752
27.
Schennach
,
O.
,
Woisetschläger
,
J.
,
Paradiso
,
B.
,
Persico
,
G.
, and
Gaetani
,
P.
,
2010
, “
Three Dimensional Clocking Effects in a One and a Half Stage Transonic Turbine
,”
ASME J. Turbomach.
,
132
(
1
), p.
011019
.10.1115/1.3072715
28.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Horwood
,
C. K.
,
2003
, “
Time-Resolved Vane-Rotor Interaction in a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
125
, pp.
1
13
.10.1115/1.1492823
29.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2007
, “
Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator-Rotor Axial Gaps—Part 2: Unsteady Flow Field
,”
ASME J. Turbomach.
,
129
, pp.
580
590
.10.1115/1.2472393
30.
Chaluvadi
,
V. S. P. I.
,
Kalfas
,
A.
,
Banieghbal
,
M. R.
,
Hodson
,
H. P.
, and
Denton
,
J. D.
Blade-Row Interaction in a High-Pressure Turbine
,”
AIAA J. Propul. Power
,
17
(
4
), pp.
892–901
.10.2514/2.5821
31.
Persico
,
G.
,
Gaetani
,
P.
,
Dossena
,
V.
,
D'Ippolito
,
G.
, and
Osnaghi
,
C.
,
2009
, “
On the Definition of the Secondary Flow in Three-Dimensional Cascades
,”
IMechE J. Power Energy
,
223
, pp.
667
676
.10.1243/09576509JPE836
You do not currently have access to this content.