The current design of low-pressure turbines (LPTs) with steady-blowing vortex generating jets (VGJs) uses steady computational fluid dynamics (CFD). The present work aims to support this design approach by proposing a new semiempirical transition model for injection-induced laminar-turbulent boundary layer transition. It is based on the detection of cross-flow vortices in the boundary layer which cause inflectional cross-flow velocity profiles. The model is implemented in the CFD code TRACE within the framework of the γ-Reθ transition model and is a reformulated, recalibrated, and extended version of a previously presented model. It is extensively validated by means of VGJ as well as non-VGJ test cases capturing the local transition process in a physically reasonable way. Quantitative aerodynamic design parameters of several VGJ configurations including steady and periodic-unsteady inflow conditions are predicted in good accordance with experimental values. Furthermore, the quantitative prediction of end-wall flows of LPTs is improved by detecting typical secondary flow structures. For the first time, the newly derived model allows the quantitative design and optimization of LPTs with VGJs.

References

References
1.
Hourmouziadis
,
J.
,
1989
, “
Aerodynamic Design of Low Pressure Turbines
,” AGARD Lecture Series 167.
2.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.10.1115/1.2929110
3.
Haselbach
,
F.
,
Schiffer
,
H.-P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N.
, and
Read
,
S.
,
2002
, “
The Application of Ultra High Lift Blading in the BR715 LP Turbine
,”
ASME J. Turbomach.
,
124
(
1
), pp.
45
51
.10.1115/1.1415737
4.
Gier
,
J.
,
Franke
,
M.
,
Hübner
,
N.
, and
Schröder
,
T.
,
2010
, “
Designing Low Pressure Turbines for Optimized Airfoil Lift
,”
ASME J. Turbomach.
,
132
(
3
), p.
031008
.10.1115/1.3148476
5.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
1999
, “
Control of Low-Pressure Turbine Separation Using Vortex Generator Jets
,” 37th Aerospace Science Meeting and Exhibit, Reno, NV, January 11–14,
AIAA
Paper No. 99-0367. 10.2514/6.1999-367
6.
Ludewig
,
T.
,
Mack
,
M.
,
Niehuis
,
R.
, and
Franke
,
M.
,
2011
, “
Optimization of the Blowing Ratio for a Low Pressure Turbine Cascade With Active Flow Control
,”
9th European Turbomachinery Conference
, Istanbul, March 21–25, Paper No. ETC2011-131.
7.
Volino
,
R. J.
,
Kartuzova
,
O.
, and
Ibrahim
,
M. B.
,
2009
, “
Experimental and Computational Investigations of Low-Pressure Turbine Separation Control Using Vortex Generator Jets
,”
ASME
Paper No. GT2009-59983. 10.1115/GT2009-59983
8.
Gad-El-Hak
,
M.
,
2006
,
Flow Control—Passive, Active and Reactive Flow Management
,
Cambridge University Press
,
Cambridge, UK
.
9.
Lake
,
J.
,
King
,
P.
, and
Rivir
,
R.
,
2000
, “
Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves
,” 38th Aerospace Sciences Meeting and Exhibit,
AIAA
Paper No. 00-0738. 10.2514/6.2000-738
10.
Volino
,
R. J.
,
2003
, “
Passive Flow Control on Low-Pressure Turbine Airfoils
,”
ASME J. Turbomach.
,
125
(
4
), pp.
754
764
.10.1115/1.1626685
11.
Sieverding
,
C. H.
,
Bagnera
,
C.
,
Boege
,
A. C.
,
Antòn
,
J. A. C.
, and
Luère
,
V.
,
2004
, “
Investigation of the Effectiveness of Various Types of Boundary Layer Transition Elements of Low Reynolds Number Turbine Bladings
,”
ASME
Paper No. GT2004-54103. 10.1115/GT2004-54103
12.
Himmel
,
C.
,
Thomas
,
R.
, and
Hodson
,
H.
,
2009
, “
Effective Passive Flow Control for Ultra-High Lift Low Pressure Turbines
,”
8th European Turbomachinery Conference
, Graz, Austria, March 23–27, Paper No. ETC2009-130.
13.
Martinstetter
,
M.
,
Niehuis
,
R.
, and
Franke
,
M.
,
2010
, “
Passive Boundary Layer Control on a Highly Loaded Low Pressure Turbine Cascade
,”
ASME
Paper No. GT2010-22739. 10.1115/GT2010-22739
14.
Zhang
,
X. F.
,
Vera
,
M.
,
Hodson
,
H.
, and
Harvey
,
N.
,
2006
, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: Low-Speed Investigation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
517
527
.10.1115/1.2187524
15.
Lou
,
H.
,
Qiao
,
W.
, and
Xu
,
K.
,
2009
, “
Passive Control of Laminar Separation Bubble With Spanwise Groove on a Low-Speed Highly Loaded Low-Pressure Turbine Blade
,”
J. Thermal Sci.
,
18
(
3
), pp.
193
201
.10.1007/s11630-009-0193-0
16.
List
,
J.
,
Byerley
,
A. R.
,
McLaughlin
,
T. E.
, and
Van Dyken
,
R. D.
,
2003
, “
Using a Plasma Actuator to Control Laminar Separation on a Linear Cascade Turbine Blade
,” 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9,
AIAA
Paper No. 2003-1026. 10.2514/6.2003-1026
17.
Boxx
,
I. G.
,
Newcamp
,
J. M.
,
Franke
,
M. E.
,
Woods
,
N. M.
, and
Rivir
,
R. B.
,
2006
, “
A PIV Study of a Plasma Discharge Flow-Control Actuator on a Flat Plate in an Aggressive Pressure Induced Separation
,”
ASME
Paper No. GT2006-91044. 10.1115/GT2006-91044
18.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2007
, “
Numerical Investigation of Plasma-Based Flow Control for Transitional Highly Loaded Low-Pressure Turbine
,”
AIAA J.
,
45
(
10
), pp.
2554
2564
.10.2514/1.29602
19.
Hoheisel
,
H.
,
1985
, “
Experimentelle Untersuchungen am Turbinengitter T107 - Teil I: Nachlauf- und Druckverteilungsmessungen
,” Tech. Rep. IB 129-85/28, German Test and Research Institute for Aviation and Space Flight, Research Area Fluid Dynamics, Institute of Design Aerodynamics, Brunswick, Germany.
20.
Volino
,
R. J.
,
2003
, “
Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Jet Vortex Generator Jets
,”
ASME J. Turbomach.
,
125
(
4
), pp.
765
777
.10.1115/1.1626686
21.
Haas
,
W.
,
Rodi
,
W.
, and
Schönung
,
B.
,
1992
, “
The Influence of Density Difference Between Hot and Coolant Gas on Film Cooling by a Row of Holes: Predictions and Experiments
,”
ASME J. Turbomach.
,
114
(
4
), pp.
747
755
.10.1115/1.2928028
22.
Margason
,
R. J.
,
1993
, “
Fifty Years of Jet in Crossflow Research
,”
72nd AGARD Fluid Dynamics Panel Meeting and Symposium on Computational and Experimental Assessment of Jet in Crossflow
, Winchester, UK, April 19–22, Paper No. AGARD CP-534.
23.
Olson
,
H.
,
Reimann
,
D.
,
Bloxham
,
M.
, and
Bons
,
J.
,
2005
, “
The Effects Elevated Freestream Turbulence on Separation Control With Vortex-Generating Jets
,” 43rd Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10–13,
AIAA
Paper No. 2005-1114. 10.2514/6.2005-1114
24.
Ludewig
,
T.
,
2011
, “
Applikation aktiver und semiaktiver Methoden der Grenzschichtbeeinflussung an modernen hochbelasteten Niederdruckturbinen-Beschaufelungen
,” Ph.D. thesis, Fakultät fr Luft- und Raumfahrttechnik, Universität der Bundeswehr, Munich, Germany.
25.
Ibrahim
,
M. B.
,
Kartuzova
,
O.
,
Doucet
,
D. J.
, and
Volino
,
R. J.
,
2010
, “
LES Flow Control Simulations for Highly Loaded Low Pressure Turbine Airfoil (L1A) Using Pulsed Vortex Generator Jets
,”
ASME
Paper No. GT2010-23015. 10.1115/GT2010-23105
26.
Sondergaard
,
R.
,
Rivir
,
R. B.
, and
Bons
,
J. P.
,
2002
, “
Control of Low-Pressure Turbine Separation Using Vortex-Generator Jets
,”
J. Propul. Power
,
18
(
4
), pp.
889
895
.10.2514/2.6014
27.
Schumann
,
T.
,
Kasper
,
C.
,
Staudacher
,
S.
, and
Gier
,
J.
,
2006
, “
Untersuchung von geometrischen Einflussparametern bei Grenzschichteinblasung an hochbelasteten Niederdruckturbinenprofilen am Wasserkanal
,” Deutscher Luft- und Raumfahrtkongress, No. DGLR2006-192.
28.
Compton
,
D. A.
, and
Johnston
,
J. P.
,
1992
, “
Streamwise Vortex Production by Pitched and Skewed Jets in a Turbulent Boundary Layer
,”
AIAA J.
,
30
(
3
), pp.
640
647
.10.2514/3.10967
29.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part II—Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.10.1115/1.555434
30.
Horstmann
,
K.-H.
, and
Quast
,
A.
,
1981
, “
Widerstandsminderung durch Blasturbulatoren
,” Tech. Rep. DFVLR-FB 81-33, German Test and Research Institute for Aviation and Space Flight, Research Area Fluid Dynamics, Institute of Design Aerodynamics, Brunswick, Germany.
31.
Horstmann
,
K.-H.
,
Quast
,
A.
, and
Boermans
,
L.
,
1984
, “
Pneumatic Turbulators—A Device for Drag Reduction at Reynolds Numbers Below 5 * 106
,”
AGARD Conference Proceedings No. 365 Improvement of Aerodynamic Performance Through Boundary Layer Control and High Lift Systems—Fluid Dynamics Panel Symposium, Brussels, Belgium, May 21–23
.
32.
Quast
,
A.
, and
Horstmann
,
K.-H.
,
1982
, “
Anordnung zur Beeinflussung der Strömung an aerodynamischen Profilen
,” European Patent EP 0 052 242 A1.
33.
Eldredge
,
R.
, and
Bons
,
J.
,
2004
, “
Active Control of a Separating Boundary Layer With Steady Vortex Generating Jets—Detailed Flow Measurements
,” 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 5–8,
AIAA
Paper No. 2004-751. 10.2514/6.2004-751
34.
Postl
,
D.
,
2005
, “
Numerical Investigation of Laminar Separation Control Using Vortex Generating Jets
,” Ph.D. thesis, Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ.
35.
Koîzulovíc
,
D.
,
Röber
,
T.
, and
Nürnberger
,
D.
,
2007
, “
Application of a Multimode Transition Model to Turbomachinery Flows
,”
Proceedings 7th European Turbomachinery Conference, Athens, Greece, March 5–9
.
36.
Langtry
,
R.
, and
Menter
,
F.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
37.
Marciniak
,
V.
,
Kügeler
,
E.
, and
Franke
,
M.
,
2010
, “
Predicting Transition on Low-Pressure Turbine Profiles
,”
V European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2010), Lisbon, Portugal, June 14–17
.
38.
Garg
,
V. K.
,
2002
, “
Low-Pressure Turbine Separation Control—Comparison With Experimental Data
,”
ASME
Paper No. GT2002-30229. 10.1115/GT2002-30229
39.
Herbst
,
F.
,
Biester
,
M.
,
Fiala
,
A.
,
Engel
,
K.
, and
Seume
,
J. R.
,
2010
, “
Validation of RANS-Modelling Approaches for Active Flow Control by Vortex Generating Jets in a Low-Pressure Turbine Cascade
,”
Proceedings of the 8th International Symposium on Engineering Turbulence Modelling and Measurements
, Marseille, France, June 9–11, Paper No. ETMM8.
40.
Herbst
,
F.
,
Koîzulovíc
,
D.
, and
Seume
,
J. R.
,
2013
, “
Transition Modelling for Vortex Generating Jets on Low-Pressure Turbine Profiles
,”
ASME J. Turbomach.
,
135
(
3
), p.
011038
.10.1115/1.4006421
41.
Dassler
,
P.
,
Koîzulovíc
,
D.
, and
Fiala
,
A.
,
2012
, “
An Approach for Modelling the Roughness-Induced Boundary Layer Transition Using Transport Equations
,”
European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2012), Vienna, Austria, September 10–14
.
42.
Kohama
,
Y.
,
1987
, “
Some Expectation on the Mechanism of Cross-Flow Instability in a Swept Wing Flow
,”
Acta Mech.
,
66
, pp.
21
38
.10.1007/BF01184283
43.
Schlichting
,
H.
, and
Gersten
,
K.
,
2006
,
Grenzschicht-Theorie
,
10th ed.
,
Springer
,
Berlin
.
44.
Saric
,
W. S.
,
Reed
,
H. L.
, and
White
,
E. B.
,
2003
, “
Stability and Transition of Three-Dimensional Boundary Layers
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
413
440
.10.1146/annurev.fluid.35.101101.161045
45.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the 1988 Summer Program
, Center for Turbulence Research, Stanford, CA, pp.
193
208
.
46.
Kohama
,
Y.
, and
Davis
,
S.
,
1993
, “
A New Parameter for Predicting Crossflow Instability
,”
JSME Int. J.
,
36
, pp.
80
85
.10.1299/jsmeb.36.80
47.
Koîzulovíc
,
D.
, and
Röber
,
T.
,
2006
, “
Modelling the Streamline Curvature Effects in Turbomachinery Flows
,”
ASME
Paper No. GT2006-90265. 10.1115/GT2006-90265
48.
Nürnberger
,
D.
,
2004
, Implizite Zeitintegration für die Simulation von Turbomaschinenströmungen, Forschungsbericht Deutsches Zentrum für Luft- und Raumfahrt, Deutsches Zentrum für Luft- und Raumfahrt.
49.
Kügeler
,
E.
,
Nürnberger
,
D.
,
Weber
,
A.
, and
Engel
,
K.
,
2008
, “
Influence of Blade Fillets on the Performance of a 15 Stage Gas Turbine Compressor
,”
ASME
Paper No. GT2008-51101. 10.1115/GT2008-51101
50.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
51.
Röber
,
T.
,
Koîzulovíc
,
D.
,
Kügeler
,
E.
, and
Nürnberger
,
D.
,
2006
, “
Appropriate Turbulence Modelling for Turbomachinery Using a Two-Equation Turbulence Model
,”
New Results in Numerical and Experimental Fluid Mechanics V (Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 92)
,
H.-J.
Rath
,
C.
Holze
,
H.-J.
Heinemann
,
R.
Henke
, and
H.
Hãnlinger
, eds.,
Springer
,
Berlin
, pp.
446
454
.
52.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
53.
Ludewig
,
T.
,
Niehuis
,
R.
, and
Franke
,
M.
,
2010
, “
Comparison of the Capability of Active and Passive Methods of Boundary Layer Control on a Low Pressure Turbine Cascade
,”
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, Vol.
112
,
Springer
,
Berlin
, pp.
191
198
.
54.
Yang
,
H.
,
Nuernberger
,
D.
,
Nicke
,
E.
, and
Weber
,
A.
,
2003
, “
Numerical Investigation of Casing Treatment Mechanisms With a Conservative Mixed-Cell Approach
,”
ASME
Paper No. GT2003-38483. 10.1115/GT2003-38483
55.
ASME V & V 20 Committee
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
American Society of Mechanical Engineers
,
New York
.
56.
Langston
,
L.
,
2001
, “
Secondary Flows in Axial Turbines: A Review
,”
Ann. New York Acad. Sci.
,
934
(
1
), pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
57.
Sauer
,
H.
,
Müller
,
R.
, and
Vogeler
,
K.
,
2001
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,”
ASME J. Turbomach.
,
123
(
2
), pp.
207
213
.10.1115/1.1354142
58.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
59.
Moore
,
H.
, and
Gregory-Smith
,
D.
,
1996
, “
Turbulence and Transition in Secondary Flows in a Turbine Cascade
,”
AGARD Conference 571—Loss Mechanisms and Unsteady Flows in Turbomachines
, Derby, UK, May 8–12, pp.
8.1
8.12
.
60.
Vera
,
M.
,
de la Rosa Blanco
,
E.
,
Hodson
,
H.
, and
Vazquez
,
R.
,
2009
, “
Endwall Boundary Layer Development in an Engine Representative Four-Stage Low Pressure Turbine Rig
,”
ASME J. Turbomach.
,
131
(
1
), p.
011017
.10.1115/1.2952382
61.
Förster
,
F.
,
Sims-Williams
,
D.
,
Ingram
,
G.
, and
Dominy
,
R.
,
2011
, “
Time Resolved Measurements in the Durham Cascade
,”
ASME
Paper No. GT2011-45838. 10.1115/GT2011-45838
62.
Biester
,
M.
,
Henke
,
M.
,
Seume
,
J. R.
,
Gündogdu
,
Y.
, and
Engel
,
K.
,
2012
, “
Unsteady Wake-Blade Interaction: A Correlation Between Surface Pressure Fluctuations and Loss Generation
,”
ASME
Paper No. GT2012-69616. 10.1115/GT2012-69616
63.
Amecke
,
J.
,
1967
, “
Auswertung von Nachlaufmessungen an ebenen Schaufelgittern
,” Tech. Rep. Bericht 67 A 49, AVA Göttingen, Göttingen, Germany.
You do not currently have access to this content.