One of the most widely studied parameters in turbine blade shaping is blade lean, i.e., the tangential displacement of spanwise sections. However, there is a lack of published research that investigates the effect of blade lean under nonuniform temperature conditions (commonly referred to as a “hot-streak”) that are present at the combustor exit. Of particular interest is the impact of such an inflow temperature profile on heat transfer when the nozzle guide vane (NGV) blades are shaped. In the present work, a computational study has been carried out for a transonic turbine stage using an efficient unsteady Navier–Stokes solver (HYDRA). The configurations with a nominal vane and a compound leaned vane under uniform and hot-streak inlet conditions are analyzed. After confirming the typical NGV loading and aeroloss redistributions as seen in previous literature on blade lean, the focus has been directed to the rotor aerothermal behavior. While the overall stage efficiencies for the configurations are largely comparable, the results show strikingly different rotor heat transfer characteristics. For a uniform inlet, a leaned NGV has a detrimental effect on the rotor heat transfer. However, once the hot-streak is introduced, the trend is reversed; the leaned NGV leads to favorable heat transfer characteristics in general and for the rotor tip region in particular. The possible causal links for the observed aerothermal features are discussed. The present findings also highlight the significance of evaluating NGV shaping designs under properly conditioned inflow profiles, rather than extrapolating the wisdom derived from uniform inlet cases. The results also underline the importance of including rotor heat transfer and coolability during the NGV design process.

References

References
1.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Jopslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.10.2514/3.23116
2.
Dorney
,
D. J.
,
Davis
,
R. L.
,
Edwards
D. E.
, and
Madavan
,
N. K.
,
1992
, “
Unsteady Analysis of Hot-Streak Migration in a Turbine Stage
,”
J. Propul. Power
,
8
(
2
), pp.
520
529
.10.2514/3.23507
3.
Chana
,
K. S.
,
Hurrion
,
J. R.
, and
Jones
,
T. V.
,
2003
, “
The Design, Development and Testing of a Non-Uniform Inlet Temperature Generator for the QinetiQ Transient Turbine Research Facility
,”
ASME
Paper No. GT2002–30554.10.1115/GT2002-30554
4.
Chana
,
K. S.
, and
Jones
,
T. V.
,
2002
, “
An Investigation On Turbine Tip and Shroud Heat Transfer
,”
ASME
Paper No. GT2003-38469.10.1115/GT2003-38469
5.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
,
2007
, “
Effect of Hot-Streak Counts on Turbine Blade Heat Load and Forcing
,”
J. Propul. Power
,
23
(
6
), pp.
1235
1241
.10.2514/1.29603
6.
Munk
,
M.
, and
Prim
,
R. C.
,
1947
, “
On the Multiplicity of Steady Gas Flows Having the Same Streamwise Pattern
,”
Proc. Natl. Acad. Sci., U.S.A.
,
33
, pp.
137
141
.10.1073/pnas.33.5.137
7.
Shang
,
T.
, and
Epstein
,
A. H.
,
1997
, “
Analysis of Hot-Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
,
119
(
2
), pp.
544
553
.10.1115/1.2841156
8.
Ong
,
J.
, and
Miller
,
R. J.
,
2008
, “
Hot-Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME
Paper No. GT2008-50971.10.1115/GT2008-50971
9.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2012
, “
Effect of Temperature Nonuniformity on Heat Transfer in an Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J. Turbomach.
,
134
, p.
011005
.10.1115/1.4002987
10.
Salvadori
,
S.
,
Montomoli
,
F.
,
Martelli
,
F.
,
Chana
,
K.
,
Qureshi
,
I.
, and
Povey
,
T.
,
2012
, “
Analysis on the Effect of a Nonuniform Inlet Profile on Heat Transfer and Fluid Flow in Turbine Stages
,”
ASME J. Turbomach.
,
134
,
011012
.10.1115/1.4003233
11.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
,
041025
.10.1115/1.4002424
12.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2011
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
.10.1115/1.4001245
13.
Prasad
,
D.
, and
Hendricks
,
G. J.
,
2000
, “
A Numerical Study of Secondary Flow in Axial Turbines With Application to Radial Transport of Hot Streaks
,”
ASME J. Turbomach.
,
122
, pp.
667
673
.10.1115/1.1313817
14.
Harrison
,
S.
,
1992
, “
The Influence of Blade Lean on Turbine Losses
,”
ASME J. Turbomach.
,
114
, pp.
184
190
.10.1115/1.2927982
15.
Denton
,
J.
, and
Xu
,
L.
,
1999
, “
The Exploitation of Three-Dimensional Flow in Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
125
137
.10.1243/0954406991522220
16.
Sharma
,
O.
,
Kopper
,
F.
,
Stetson
,
G.
,
Magge
,
S.
,
Price
,
F.
, and
Ni
,
R.
,
2003
, “
A Perspective on the Use of Physical and Numerical Experiments in the Advancement of Design Technology for Axial Flow Turbines
,” International Symposium on Air Breathing Engines (ISABE), Reno, NV, January 6–9,
AIAA
Paper No. 2003-1035.10.2514/6.2003-1035
17.
Bagshaw
,
D.
,
Ingram
,
G.
,
Gregory-Smith
,
D. G.
, and
Stokes
,
M.
,
2005
, “
An Experimental Study of Reverse Compound Lean in a Linear Turbine Cascade
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
443
449
.10.1243/095765005X31199
18.
Rosic
,
B.
, and
Xu
,
L.
,
2012
, “
Blade Lean and Shroud Leakage Flows in Low Aspect Ratio Turbines
,”
ASME J. Turbomach.
,
134
(
3
), p.
031003
.10.1115/1.3106002
19.
Takahashi
,
R. K.
,
Ni
,
R. H.
,
Sharma
,
O. P.
, and
Staubach
,
J. B.
,
1996
, “
Effects of Hot-Streak Indexing on a 1-1/2 Stage Turbine
,” AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Lake Buena Vista, FL, July 1–3,
AIAA
Paper No. 96-2796.10.2514/6.1996-2796
20.
Khanal
,
B.
, and
He
,
L.
,
2011
, “
Influence of Hot-Streak Profile on Integrated Heat Load and Stage Performance
,” Rolls-Royce, Technical Report April-HS.
21.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2012
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through HP Turbine Stage
,”
ASME
Paper No. GT2012-68983.10.1115/GT2012-68983
22.
Moinier
,
P.
,
Muller
,
J.
, and
Giles
,
M.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
2
), pp.
1954
1960
.10.2514/2.1556
23.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One Equation Turbulence Model for Aerodynamic Flows
,” Proceedings of the 30th AIAA Aerospace Sciences Meeting and Exhibit,
AIAA
Paper No. 1992-0439.10.2514/6.1992-439
24.
Jameson
,
A.
,
1991
, “
Time-Dependent Calculations Using Multi-Grid, With Applications to Unsteady Flows Past Airfoil and Wings
,” 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9,
AIAA
Paper No. 91-1596.10.2514/6.1991-1596
25.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.10.1016/j.paerosci.2010.04.001
26.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J. D.
, and
Adami
,
P.
,
2012
, “
Unsteady Aero Thermal Behaviour of HP Turbine Stage Under Combustor Hot Streak and Swirl
,”
13th International Symposium on Unsteady Aerodynamics Aero-Elasticity and Aero-Acoustics of Turbomachines
(ISUAAAT13), Tokyo, September 10–14.
27.
Rahim
,
A.
,
Khanal
,
B.
, and
He
,
L.
,
2012
, “
Effect of Positive Compound Lean on HP Turbine Aerothermal Performance With Inlet Temperature Traverse
,” Rolls-Royce Technical Report.
You do not currently have access to this content.