In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapor phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size interphase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to an approach for turbulent pipe flows and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions.

References

References
1.
Gerber
,
A. G.
,
Sigg
,
R.
,
Völker
,
L.
,
Casey
,
M. V.
, and
Sürken
,
N.
,
2007
, “
Predictions of Nonequilibrium Phase Transition in a Model Low-Pressure Steam Turbine
,”
Proc. IMechE, J. Power Energy
,
221
(
6
), pp.
825
835
.10.1243/09576509JPE456
2.
Wroblewski
,
W.
,
Dykas
,
S.
,
Gardzilewicz
,
A.
, and
Kolovratnik
,
M.
,
2009
, “
Numerical and Experimental Investigation of Steam Condensation in LP Part of a Large Power Turbine
,”
ASME J. Fluids Eng.
,
131
(
4
), p. 041301.10.1115/1.3089544
3.
Chandler
,
K.
,
White
,
A.
, and
Young
,
J. B.
,
2012
, “
Comparison of Unsteady Non-Equilibrium Wet-Steam Calculations With Model Turbine Data
,”
Baumann Centenary Wet Steam Conference
, Cambridge, UK, September 10–11, Paper No. BCC-2012-10.
4.
Starzmann
,
J.
,
Casey
,
M.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2012
, “
Wetness Loss Prediction for a Low Pressure Steam Turbine Using CFD
,”
Baumann Centenary Wet Steam Conference
, Cambridge, UK, September 10–11, Paper No. BCC-2012-14.
5.
Young
,
J. B.
,
1982
, “
The Spontaneous Condensation of Steam in Supersonic Nozzles
,” PhysicoChem. Hydrodyn.,
3
(
1
), pp.
57
82
.
6.
Starzmann
,
J.
,
Schatz
,
M.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2011
, “
Modelling and Validation of Wet Steam Flow in a Low Pressure Steam Turbine
,”
ASME
Paper No. GT2011-45672.10.1115/GT2011-45672
7.
Gerber
,
A. G.
,
2008
, “
Inhomogeneous Multifluid Model for Prediction of Nonequilibrium Phase Transition and Droplet Dynamics
,”
ASME J. Fluids Eng.
,
130
(
3
), p. 031402.10.1115/1.2844580
8.
Schiller
,
L.
, and
Nauman
,
A.
,
1933
, “
Über die Grundlegenden Berechnungen bei der Schwerkraftaufbereitung
,”
VDI Z. (1857–1968)
,
77
, pp.
318
320
.
9.
Schatz
,
M.
, and
Eberle
,
T.
,
2012
, “
Experimental Study of Steam Wetness in a Model Steam Turbine Rig: Presentation of Results and Comparison With CFD Data
,”
Baumann Centenary Wet Steam Conference
, Cambridge, UK, September 10–11, Paper No. BCC-2012-09.
10.
Gyarmathy
,
G.
,
1962
, “
Grundlagen einer Theorie der Nassdampfturbine
,” Ph.D. thesis, ETH Zürich, Juris Verlag Zürich.
11.
Young
,
J. B.
, and
Yau
,
K. K.
,
1988
, “
The Inertial Deposition of Fog Droplets on Steam Turbine Blades
,”
ASME J. Turbomach.
,
110
, pp.
155
162
.10.1115/1.3262175
12.
Young
,
J.
, and
Leeming
,
A.
,
1997
, “
A Theory of Particle Deposition in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
340
, pp.
129
159
.10.1017/S0022112097005284
13.
Guha
,
A.
,
2008
, “
Transport and Deposition of Particles in Turbulent and Laminar Flow
,”
Ann. Rev. Fluid Mech.
,
40
, pp.
311
341
.10.1146/annurev.fluid.40.111406.102220
14.
Crane
,
R. I.
,
2004
, “
Droplet Deposition in Steam Turbines
,”
IMechE
,
218
, pp.
859
870
.10.1243/0954406041474200
15.
Reeks
,
M. W.
,
1983
, “
The Transport of Discrete Particles in Inhomogeneous Turbulence
,”
J. Aerosol Sci.
,
14
(
6
), pp.
729
739
.10.1016/0021-8502(83)90055-1
16.
Guha
,
A.
,
1997
, “
A Unified Eulerian Theory of Turbulent Deposition to Smooth and Rough Surface
,”
J. Aerosol Sci.
,
28
(
8
), pp.
1517
1537
.10.1016/S0021-8502(97)00028-1
17.
Crane
,
R. I.
,
1973
, “
Deposition of Fog Drops on Low Pressure Steam Turbine Blades
,”
J. Mech. Sci.
,
15
(
8
), pp.
613
631
.10.1016/0020-7403(73)90094-5
18.
Yau
,
K. K.
, and
Young
,
J. B.
,
1987
, “
The Deposition of Fog Droplets on Steam Turbine Blades by Turbulent Diffusion
,”
ASME J. Turbomach.
,
109
, pp.
429
435
.10.1115/1.3262123
19.
Wood
,
N. B.
,
1981
, “
A Simple Method for the Calculation of Turbulent Deposition to Smooth and Rough Surfaces
,”
J. Aerosol Sci.
,
12
, pp.
275
290
.10.1016/0021-8502(81)90127-0
20.
Young
,
J. B.
,
Yau
,
K. K.
, and
Walters
,
P. T.
,
1988
, “
Fog Droplet Deposition and Coarse Water Formation in Low-Pressure Steam Turbines: A Combined Experimental and Theoretical Analysis
,”
ASME, J. Turbomach.
,
110
, pp.
163
172
.10.1115/1.3262176
21.
Liu
,
B.Y.H.
, and
Agarwal
,
J. K.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
J. Aerosol Sci.
,
5
, pp.
145
155
.10.1016/0021-8502(74)90046-9
22.
Johansen
,
S. T.
,
1991
, “
The Deposition of Particles on Vertical Walls
,”
Int. J. Multiphase Flow
,
17
(
3
), pp.
355
376
.10.1016/0301-9322(91)90005-N
23.
Reeks
,
M. W.
,
2005
, “
On Model Equations for Particle Dispersion in Inhomogeneous Turbulence
,”
Int. J. Multiphase Flow
,
31
, pp.
93
114
.10.1016/j.ijmultiphaseflow.2004.08.002
24.
Slater
,
S. A.
,
Leeming
,
A. D.
, and
Young
,
J. B.
,
2003
, “
Particle Deposition From Two-Dimensional Turbulent Gas Flows
,”
Int. J. Multiphase Flow
,
29
, pp.
721
750
.10.1016/S0301-9322(03)00037-5
25.
Shin
,
M.
,
Kim
,
D. S.
, and
Lee
,
J. W.
,
2003
, “
Deposition of Inertia-Dominated Particles Inside a Turbulent Boundary Layer
,”
Int. J. Multiphase Flow
,
29
, pp.
893
926
.10.1016/S0301-9322(03)00063-6
26.
Reeks
,
M. W.
, and
Skyrme
,
G.
,
1976
, “
The Dependence of Particle Deposition Velocity on Particle Inertia in Turbulent Pipe Flow
,”
J. Aerosol Sci.
,
7
, pp.
485
495
.10.1016/0021-8502(76)90054-9
27.
Sigg
,
R.
,
2010
, “
Numerische Untersuchung von Lastvariationen und Nässephänomenen an einer Niederdruck-Dampfturbine
,” Doctoral thesis, ITSM Universität Stuttgart, Shaker Verlag.
You do not currently have access to this content.