The accurate modeling of the wind turbine wakes in complex terrain is required to accurately predict wake losses. In order to facilitate the routine use of computational fluid dynamics in the optimized micrositing of wind turbines within wind farms, an immersed wind turbine model is developed. This model is formulated to require grid resolutions that are comparable to that in microscale wind simulations. The model in connection with the k-ω turbulence model is embedded in a Reynolds-averaged Navier–Stokes solver. The predictions of the model are compared to available wind tunnel experiments and to measurements at the full-scale Sexbierum wind farm. The good agreement between the predictions and measurements demonstrates that the novel immersed turbine model is suited for the optimized micrositing of wind turbines in complex terrain.

References

References
1.
Sanderse
,
B.
,
2009
, “
Aerodynamics of Wind Turbine Wakes
,” Energy Research Centre of the Netherlands, Petten, Netherlands, Technical Report ECN-E–09-016.
2.
Jensen
,
N. O.
,
1983
, “
A Note on Wind Generator Interaction
,” Riso National Laboratory, Roskilde, Denmark, Technical Report M-2411.
3.
Lissaman
,
P. B. S.
,
1979
, “
Energy Effectiveness of Arbitrary Arrays of Wind Turbines
,”
AIAA
Paper No. 79-011410.2514/6.1979-114.
4.
Ainslie
,
J. F.
1985
, “
Development of an Eddy Viscosity Model for Wind Turbine Wakes
,”
7th BWEA Wind Energy Conference
, Oxford, UK, March 27–29, pp.
61
66
.
5.
Crespo
,
A.
,
Manuel
,
F.
,
Moreno
,
D.
,
Fraga
,
E.
, and
Hernandez
,
J.
,
1985
, “
Numerical Analysis of Wind Turbine Wakes
,”
Delphi Workshop on Wind Energy Applications
, Delphi, Greece, May 20–22, pp.
15
25
.
6.
Voutsinas
,
S. G.
,
Glekas
,
J. P.
, and
Zervos
A.
,
1992
, “
Investigation of the Effect of the Initial Velocity Profile on the Wake Development of a Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
39
, pp.
293
301
.10.1016/0167-6105(92)90554-N
7.
Sorensen
,
J. N.
, and
Myken
,
A.
,
1992
, “
Unsteady Actuator Disc Model for Horizontal Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
39
, pp.
139
149
.10.1016/0167-6105(92)90540-Q
8.
Hogstrom
,
U.
,
Asimakopoulos
,
D. N.
,
Kambezidis
,
H.
,
Helmis
,
C. G.
, and
Smedman
,
A.
,
1988
, “
A Field Study of the Wake Behind a 2MW Wind Turbine
,”
Atmos. Environ.
,
22
, pp.
803
820
.10.1016/0004-6981(88)90020-0
9.
Bossanyi
,
E. A.
,
Maclean
,
C.
,
Whittle
,
G. E.
,
Dunn
,
P. D.
,
Lipman
,
N. H.
, and
Musgrove
,
P. J.
,
1980
, “
The Efficiency of Wind Turbine Clusters
,”
3rd International Symposium on Wind Energy Systems
, Lyngby, Denmark, pp.
401
416
.
10.
Vermeulen
,
P. E. J.
,
1980
, “
An Experimental Analysis of Wind Turbine Wakes
,”
3rd International Symposium on Wind Energy Systems
, Lyngby, Denmark, August 26–29, pp.
431
450
.
11.
Katic
,
I.
,
Hojstrup
,
J.
, and
Jensen
,
N. O.
,
1986
, “
A Simple Model for Cluster Efficiency
,”
European Wind Energy Association Conference and Exhibition (EWEC'86)
, Rome, Italy, October 6–8, pp.
407
410
.
12.
Crespo
,
A.
, and
Hernandez
,
J.
,
1993
, “
Analytical Correlations for Turbulence Characteristics in the Wakes of Wind Turbines
,”
European Community Wind Energy Conference
, Travemuende, Germany, March 8–12, pp.
436
439
.
13.
Smith
,
D.
and
Taylor
,
G. J.
,
1991
, “
Further Analysis of Turbine Wake Development and Interaction Data
,”
13th BWEA Wind Energy Conference
, Swansea, UK, April 10–12, pp.
325
331
.
14.
Tindal
,
A. J.
,
1993
, “
Dynamic Loads in Wind Farms
,” Final Report, CEC Project JOUR-0084-C.
15.
Vermeer
,
L. J.
,
Sorensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
, pp.
467
510
.10.1016/S0376-0421(03)00078-2
16.
Crespo
,
A.
,
Hernandez
,
J.
, and
Frandsen
,
S.
,
1999
, “
Survey of Modeling Methods for Wind Turbine Wakes and Wind Farms
,”
Wind Energy
,
2
, pp.
1
24
.10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7
17.
Ansorge.
,
T.
,
Fallen
,
M.
,
Gunther
,
P.
,
Ruh
,
C.
, and
Wolfanger
,
T.
,
1994
, “
Numerical Simulation of Wake-Effects in Complex Terrain and Application of a Reynolds-Stress Turbulence Model
,”
5th European Wind Energy Association Conference and Exhibition (EWEC'94)
, Thessaloniki, Greece, October 10–14, pp.
448
453
.
18.
Chaviaropoulos
,
P. K.
, and
Douvikas
,
D. I.
,
1999
, “
Mean Wind Field Prediction Over Complex Terrain in the Presence of Wind Turbines
,”
European Wind Energy Association Conference and Exhibition (EWEC'99)
, Nice, France, March 1–5, pp.
1208
1211
.
19.
Politis
,
E. S.
, and
Chaviaropoulos
,
P. K.
,
2008
, “
Micrositing and Classification of Wind Turbines in Complex Terrain
,”
European Wind Energy Association Conference and Exhibition (EWEC)
, Brussels, Belgium, March 31–April 3, pp.
126
130
.
20.
Barthelmie
,
R. J.
,
Frandsen
,
S. T.
,
Rathmann
,
O.
,
Hansen
,
K.
,
Politis
,
E. S.
,
Prospathopoulos
,
J.
,
Cabezón
,
D.
,
Rados
,
K.
,
van der Pijl
,
S. P.
,
Schepers
,
J. G.
,
Schlez
,
W.
,
Phillips
,
J.
, and
Neubert
A.
,
2008
, “
Flow and Wakes in Large Wind Farms in Complex Terrain and Offshore
,”
European Wind Energy Association Conference and Exhibition (EWEC)
, Brussels, Belgium, March 31–April 3.
21.
Politis
,
E. S.
,
Prospathopoulos
,
J.
,
Cabezon
,
D.
,
Hansen
,
K. S.
,
Chaviaropoulos
,
P. K.
, and
Barthelmie
,
R. J.
,
2012
, “
Modelling Wake Effects in Large Wind Farms in Complex Terrain: The Problem, the Methods and the Issues
,”
Wind Energy
,
15
, pp.
161
182
.10.1002/we.481
22.
Ni
,
R.
,
1981
, “
A Multiple Grid Scheme for Solving the Euler Equations
,”
AIAA J.
,
20
, pp.
1565
1571
10.2514/6.1981-1025.
23.
Baldwin
,
B. S.
, and
Lomax
,
H.
,
1978
, “
Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows
,”
AIAA
Paper No. 78-25710.2514/6.1978-257.
24.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper 92-043910.2514/6.1992.0439.
25.
Liu
,
F.
, and
Zheng
,
X.
,
1994
, “
Staggered Finite Volume Scheme for Solving Cascade Flow With a k-ω Turbulence Model
,”
AIAA J.
,
32
, pp.
1589
1597
.10.2514/3.12148
26.
Jafari
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2011
, “
Terrain Effects on Wind Flow: Simulations With an Immersed Boundary Method
,”
ASME
Paper No. GT2011-4624010.1115/GT2011-46240.
27.
Jafari
,
S.
,
Chokani
,
N.
, and
Abhari
,
R. S.
,
2012
, “
An Immersed Boundary Method for Simulation of Wind Flow Over Complex Terrain
,”
ASME J. Solar Energy Eng.
,
134
, p.
011006
.10.1115/1.4004899
28.
Burdet
,
A.
, and
Abhari
,
R. S.
,
2007
, “
Three-Dimensional Flow Prediction and Improvement of Holes Arrangement of a Film-Cooled Turbine Blade Using a Feature-Based Jet Model
,”
ASME J. Turbomach.
,
129
, pp.
258
268
.10.1115/1.2437778
29.
Schepers
,
J. G.
,
2003
, “
ENDOW: Validation and Improvement of ECN's Wake Model
,” Technical Report, ECN-C—03-034.
30.
Hassan
,
U.
,
1992
, “
A Wind Tunnel Investigation of the Wake Structure Within Small Wind Turbine Farms
,” ETSU WN 5113.
31.
Cleijne
,
J. W.
,
1992
, “
Results of the Sexbierum Wind Farm: Single Wake Measurements
,” TNO Report 92-388.
32.
Cleijne
,
J. W.
,
1993
, “
Results of the Sexbierum Wind Farm: Double Wake Measurements
,” TNO Report C19.3.
33.
Rodrigo
,
J. S.
,
Cabezon
,
D.
, and
Hevia
,
B. G.
,
2011
, “
A Systematic Validation Procedure for Wind Farm Models in Neutral Atmospheric Conditions
,”
13th International Conference on Wind Engineering (ICWE13), Amsterdam, Netherlands, July 10–15
, pp.
147
155
.
34.
Jensen
,
L.
,
Mørch
,
C.
,
Sørensen
,
P.
, and
Svendsen
,
K. H.
,
2004
, “
Wake Measurements From the Horns Rev Wind Farm
,”
2004 European Wind Energy Association Conference and Exhibition
, London, UK, November 22–25.
35.
Dahlberg
,
J. A.
,
2009
, “
Assessment of the Lillgrund Wind Farm: Power Performance Wake Effects
,” Vattenfall Vindkraft AB, 6_1 LG Pilot Report, http://www.vattenfall.se/sv/file/15_Assessment_of_the_Lillgrund_W.pdf_16596737.pdf (cited March 30, 2012).
You do not currently have access to this content.