An optimization strategy is described that combines high-fidelity simulations with response surface construction, and is applied to pulsed film cooling for turbine blades. The response surface is constructed for the film cooling effectiveness as a function of duty cycle, in the range of DC between 0.05 and 1, and pulsation frequency St in the range of 0.2–2, using a pseudospectral projection method. The jet is fully modulated and the blowing ratio, when the jet is on, is 1.5 in all cases. Overall 73 direct numerical simulations (DNS) using spectral element method were performed to sample the film cooling effectiveness on a Clenshaw–Curtis grid in the design space. The geometry includes a 35-degree delivery tube and a plenum. It is observed that in the parameter space explored a global optimum exists, and in the present study, the best film cooling effectiveness is found at DC = 0.14 and St = 1.03. In the same range of DC and St, four other local optimums were found. The physical mechanisms leading to the forcing parameters of the global optimum are explored and ingestion of the crossflow into the delivery tube is observed to play an important role in this process. The gradient-based optimization algorithms are argued to be unsuitable for the current problem due to the nonconvexity of the objective function.

References

References
1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
2.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
, pp.
441
453
.10.1115/1.1860562
3.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
216
.10.1115/1.2841303
4.
Acharya
,
S.
,
Tyagi
,
M.
, and
Hoda
,
A.
,
2006
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Ann. N.Y. Acad. Sci.
,
934
(
1
), pp.
110
125
.10.1111/j.1749-6632.2001.tb05846.x
5.
Acharya
,
S.
, and
Tyagi
,
M.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME
Paper No. GT2003-38633. 10.1115/GT2003-38633
6.
Iourokina
,
I.
, and
Lele
,
S.
,
2005
, “
Towards Large Eddy Simulation of Film-Cooling Flows on a Model Turbine Blade With Free-Stream Turbulence
,”
AIAA
Paper No. 2005-670. 10.2514/6.2005-670
7.
Peet
,
Y.
, and
Lele
,
S. K.
,
2008
, “
Near Field of Film Cooling Jet Issued Into a Flat Plate Boundary Layer: LES Study
,”
ASME
Paper No. GT2008-50420. 10.1115/GT2008-50420
8.
Guo
,
X.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2006
, “
Large-Eddy Simulations of Film Cooling Flows
,”
Comput. Fluids
,
35
(
6
), pp.
587
606
.10.1016/j.compfluid.2005.02.007
9.
Renze
,
P.
,
Schroder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows at Density Gradients
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
18
34
.10.1016/j.ijheatfluidflow.2007.07.010
10.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2007
, “
Effect of Jet Pulsing on Film Cooling—Part I: Effectiveness and Flow-Field Temperature Results
,”
ASME J. Turbomach.
,
129
(
2
), pp.
232
246
.10.1115/1.2437231
11.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2006
, “
Effect of Jet Pulsation and Duty Cycle on Film Cooling From a Single Jet on a Leading Edge Model
,”
ASME J. Turbomach.
,
128
(
3
), pp.
564
571
.10.1115/1.2185122
12.
El-Gabry
,
L. A.
, and
Rivir
,
R. B.
,
2012
, “
Effect of Pulsed Film Cooling on Leading Edge Film Effectiveness
,”
ASME J. Turbomach.
,
134
(
4
), p.
041005
.10.1115/1.4003653
13.
Muldoon
,
F.
, and
Acharya
,
S.
,
2009
, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3118
3127
.10.1016/j.ijheatmasstransfer.2009.01.030
14.
Bidan
,
G.
,
Vezier
,
C.
, and
Nikitopoulos
,
D. E.
,
2013
, “
Study of Unforced and Modulated Film-Cooling Jets Using Proper Orthogonal Decomposition—Part II: Forced Jets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021038
. 10.1115/1.4006600
15.
Warburton
,
T.
,
1999
, “
Spectral/hp Methods on Polymorphic Multi-Domains: Algorithms and Applications
,” Ph.D. thesis, Brown, Providence, RI.
16.
Karniadakis
,
G. E.
,
Israeli
,
M.
, and
Orszag
,
S. A.
,
1991
, “
High-Order Splitting Methods for the Incompressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
97
(
2
), pp.
414
443
.10.1016/0021-9991(91)90007-8
17.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
,
2005
,
Spectral/hp Element Methods for Computational Fluid Dynamics
,
Oxford University Press
,
New York
.
18.
Xiu
,
D.
,
2007
, “
Efficient Collocational Approach for Parametric Uncertainty Analysis
,”
Comm. Comp. Phys.
,
2
(
2
), pp.
293
309
.
19.
Clenshaw
,
C. W.
, and
Curtis
,
A. R.
,
1960
, “
A Method for Numerical Integration on an Automatic Computer
Numerische Mathematik
,
2
(
1
), pp.
197
205
.10.1007/BF01386223
20.
Battles
,
Z.
, and
Trefethen
,
L.
,
2004
, “
An Extension of Matlab to Continuous Functions and Operators
,”
SIAM J. Comput.
,
25
(
5
), pp.
1743
1770
.10.1137/S1064827503430126
21.
Bidan
,
G.
,
Vezier
,
C.
, and
Nikitopoulos
,
D. E.
,
2013
, “
Study of Unforced and Modulated Film-Cooling Jets Using Proper Orthogonal Decomposition—Part I: Unforced Jets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021037
.10.1115/1.4006599
22.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
,
2001
, “
Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
359
371
.10.1115/1.1369598
23.
Sau
,
R.
, and
Mahesh
,
K.
,
2008
, “
Dynamics and Mixing of Vortex Rings in Crossflow
,”
J. Fluid Mech.
,
604
, pp.
389
409
.10.1017/S0022112008001328
24.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
(
1997
), pp.
27
64
.10.1017/S0022112097007271
You do not currently have access to this content.