Siemens Energy has commissioned an extensive multiyear experimental and numerical (computational fluid dynamics (CFD)) project to improve its ability to design for and predict compressor stall. The experimental test rig is a half scale six stage axial compressor. The goal of this work is to provide insight into how best to predict the compressor performance map and in particular the stall point by applying state-of-the-art multiple blade row CFD simulation tools. A preliminary CFD analysis quantified numerical, model, and systematic error on the first stage of the compressor. Subsequent steady (mixing plane) and transient (time transformation) CFD simulations of the entire six stage compressor are compared to each other and to experimental data. Both the steady and transient simulations are shown to be computationally efficient and in very good agreement with the experimental data across the full performance map, up to stall inception on multiple speedlines. Physical explanations of the key flow features observed in the experiment, as well as of the differences between the predictions and experimental data, are given.

References

References
1.
Belamri
,
T.
,
Galpin
,
P.
,
Braune
,
A.
, and
Cornelius
,
C.
, “
CFD Analysis of a 15 Stage Axial Compressor Part I: Methods
,”
ASME
Paper No. GT2005-68261.10.1115/GT2005-68261
2.
Ikeguchi
,
T.
,
Matsuoka
,
A.
,
Sakai
,
Y.
, and
Sakano
,
Y.
, “
Design and Development of a 14-Stage Axial Compressor for Industrial Gas Turbine
,”
ASME
Paper No. GT2012-68524.10.1115/GT2012-68524
3.
Mailach
,
R.
, and
Vogeler
,
K.
,
2007
, “
Unsteady Aerodynamic Blade Excitation at the Stability Limit and During Rotating Stall in an Axial Compressor
,”
ASME J. Turbomach.
,
129
, pp.
503
511
.10.1115/1.2720486
4.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
,
393
401
.10.1115/1.2841730
5.
Courtiade
,
N.
, and
Ottavy
,
X.
, “
Experimental Study of Surge Precursors in a High Speed Multistage Compressor
,”
ASME
Paper No. GT2012-68321.10.1115/GT2012-68321
6.
Köller
,
U.
,
Mönig
,
R.
,
Küsters
,
B.
, and
Schreiber
,
H. A.
,
2000
, “
Development of Advanced Compressor Airfoils for Heavy Duty Gas Turbines—Part I: Design and Optimization
,”
ASME J. Turbomach.
,
122
, pp.
397
405
.10.1115/1.1302296
7.
Küsters
,
B.
,
Schreiber
,
H. A.
,
Köller
,
U.
, and
Mönig
,
R.
,
2000
, “
Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines—Part II: Experimental and Theoretical Analysis
,”
ASME J. Turbomach.
,
122
, pp.
406
415
.10.1115/1.1302321
8.
ANSYS CFX Version 14.5
, 2012, Ansys Inc., Canonsburg, PA.
9.
Raw
,
M. J.
, “
Robustness of Coupled Algebraic Multigrid for the Navier-Stokes Equations
,”
34th Aerospace and Sciences Meeting and Exhibit
,
Reno
, NV, January 15-18,
AIAA
Paper No. 96-0297.10.2514/6.1996-297
10.
Galpin
,
P. F.
,
Broberg
,
R. B.
, and
Hutchinson
,
B. R.
,
1995
, “
Three-Dimensional Navier Stokes Predictions of Steady State Rotor/Stator Interaction With Pitch Change
,”
Third Annual Conference of the CFD Society of Canada
,
Banff, Canada
, June 25-27.
11.
Giles
,
M.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
.10.2514/3.23074
12.
Connell
,
S.
,
Braaten
,
M.
,
Zori
,
L.
,
Steed
,
R.
,
Hutchinson
,
B.
, and
Cox
,
G.
, “
A Comparison of Advanced Numerical Techniques to Model Transient Flow in Turbomachinery Blade Rows
,”
ASME
Paper No. GT2011-45820.10.1115/GT2011-45820
13.
Biesinger
,
T.
,
Braune
,
A.
,
Campregher
,
R.
,
Cornelius
,
C.
,
Godin
,
P.
,
Rube
,
C.
,
Schmid
,
G.
, and
Zori
,
L.
,
2010
, “
Unsteady CFD Methods in a Commercial Solver for Turbomachinery
,”
ASME
Paper No. GT2010-22762.10.1115/GT2010-22762
14.
He
,
L.
,
1990
, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
,
12
, pp.
714
722
.10.1115/1.2927714
15.
Adamczyk
,
J. J.
,
1985
, “
Model Equation for Simulating Flows in Multistage Turbomachinery
,” ASME Paper No. 85-GT-226.
16.
Hall
,
K.
,
Thomas
,
J.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/3.15137
17.
ERCOFTAC, 2013, “
The ERCOFTAC Best Practice Guidelines for Industrial Computational Fluid Dynamics
,”
European Research Community on Flow, Turbulence and Combustion
,
Brussels, Belgium
.
18.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
19.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose Codes
,”
J. Flow Turb, Combust.
,
77
(
1–4
), pp.
277
303
.10.1007/s10494-006-9047-1
20.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2005
, “
A Scale-Adaptive Simulation Model Using Two-Equation Models
,”
AIAA
Paper No. 2005-1095.10.2514/6.2005-1095
You do not currently have access to this content.