In this paper, boundary-layer flow-control technique via steady blowing for low-speed compressor cascade applications is investigated using an analytical model based on the integral method and computational fluid dynamics (CFD). The integral method is developed and used to investigate the effect of the momentum, the velocity magnitude, and the angle of the blowing flow on the behavior of the boundary layer. It is found that the change in the boundary layer momentum thickness across the blowing location is a linear function of the blown-flow momentum coefficient and a decaying function of the blown-flow velocity ratio. For the case when the size of the blowing slot and the velocity magnitude of the blown-flow are kept constant and the blowing mass flow rate is increased by increasing the blowing angle, there is an “optimum” blowing angle that maximizes the benefit of the boundary layer blowing. This angle increases with increasing velocity ratio and reaches an asymptotic value of 45 deg. According to the model, the change in the momentum thickness across the blowing location is conveyed exponentially downstream; thus, a small change in the momentum thickness due to flow blowing can have significant effect downstream. The developed model is applied to the NACA-65-410 low speed cascade using CFD, and good agreement between theory and CFD is obtained.

References

References
1.
Lachmann
,
G. V.
,
1961
,
Boundary Layer and Flow Control
, Vol.
1
and 2,
Pergamon Press
,
London
.
2.
Fottner
,
L.
,
1979
, “
Theoretical and Experimental Investigations on Aerodynamically Highly Loaded Compressor Bladings With Boundary Layer Control
,”
AIAA
Paper No. 79-7032.10.2514/6.1979-7032
3.
Culley
,
D. E.
,
Prahst
,
P. S.
, and
Strazisar
,
A. J.
,
2004
Active Flow Separation Control of a Stator Vane Using Embedded Injection in a Multistage Compressor Experiment
,”
ASME J. Turbomach.
,
126
(
1
), pp.
24
34
.10.1115/1.1643912
4.
Kirtley
,
K. R.
,
Graziosi
,
P.
,
Wood
,
P.
,
Beacher
,
B.
, and
Shin
,
H. W.
,
2005
, “
Design and Test of an Ultralow Solidity Flow-Controlled Compressor Stator
,”
ASME J. Turbomach.
,
127
(
4
), pp.
689
698
.10.1115/1.1860374
5.
Vorreiter
,
A.
,
Fischer
,
S.
,
Saathoff
,
H.
,
Radespiel
,
R.
, and
Seume
,
J. R.
,
2012
, “
Numerical Investigations of the Efficiency of Circulation Control in a Compressor Stator
,”
ASME J. Turbomach.
,
134
(
2
), p.
021012
.10.1115/1.4003286
6.
Nerger
,
D.
,
Saathoff
,
H.
,
Radespiel
,
R.
,
Gummer
, V
.
, and
Clemen
,
C.
,
2012
, “
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
,”
ASME J. Turbomach.
,
134
(
2
), p.
021010
.10.1115/1.4003254
7.
Merchant
,
A.
,
Kerrebrock
,
J. L.
,
Adamczyk
,
J.
, and
Braunscheidel
,
E.
,
2005
, “
Experimental Investigation of a High Pressure Ratio Aspirated Fan Stage
,”
ASME J. Turbomach.
,
127
(
1
), pp.
43
51
.10.1115/1.1812323
8.
Kubrich
,
K.
,
Bölcs
,
A.
, and
Ott
,
P.
,
2004
, “
Boundary Layer Suction Via a Slot in a Transonic Compressor: Numerical Parameter Study and First Experiments
,”
ASME
Paper No. GT2004-53753.10.1115/GT2004-53753
9.
Dang
,
T. Q.
,
Van Rooij
,
M.
, and
Larosiliere
,
L. M.
,
2003
, “
Design Study of Aspirated Compressor Blades Using Three-Dimensional Inverse Method
,”
ASME
Paper No. GT2003-38492.10.1115/GT2003-38492
10.
Sarimurat
,
M.
, and
Dang
,
T. Q.
,
2012
, “
Shock Management in Diverging Flow Passages by Blowing/Suction, Part 1: Quasi-One-Dimensional Theory
,”
J. Propul. Power
,
28
(
6
), pp.
1222
1229
.10.2514/1.B34136
11.
Sarimurat
,
M.
, and
Dang
,
T. Q.
,
2012
, “
Shock Management in Diverging Flow Passages by Blowing/Suction, Part 2: Applications
,”
J. Propul. Power
,
28
(
6
), pp.
1230
1242
.10.2514/1.B34137
12.
Kays
,
W. M.
, and
Crawford
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
13.
Merchant
,
A. A.
,
1999
, “
Design and Analysis of Axial Aspirated Compressor Stages
,” Ph.D. thesis, MIT, Cambridge, MA.
14.
Emery
,
J. C.
,
Herrig
,
L. J.
,
Erwin
,
J. R.
, and
Felix
,
A. R.
,
1958
Systematic Two-Dimensional Cascade Tests of NACA 65-Series Compressor Blades at Low Speed
,” NACA Report No. 1368.
15.
Fluent Inc.
,
2006
, “
Fluent 6.3 User's Guide
,”
Fluent Inc.
,
Lebanon, NH
.
16.
Dixon
,
S. L.
,
1998
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Boston
.
17.
Iaccarino
,
G.
,
2001
, “
Predictions of a Turbulent Separated Flow Using Commercial CFD Codes
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
819
828
.10.1115/1.1400749
18.
Lien
,
F. S.
,
Kalitzin
,
G.
, and
Durbin
,
P. A.
,
1998
, “
RANS Modeling for Compressible and Transitional Flows
,”
Proceedings of the Stanford University Center for Turbulence Research Summer Program
, pp.
267
286
.
19.
Sveningsson
,
A.
, and
Davidson
,
L.
,
2005
, “
Computations of Flow Field and Heat Transfer in a Stator Vane Passage Using the v¯2-f Turbulence Model
,”
ASME J. Turbomach.
,
127
(
3
), pp.
627
634
.10.1115/1.1929820
20.
Durbin
,
P. A.
, and
Pettersson-Reif
,
B. A.
,
2011
,
Statistical Theory and Modeling for Turbulent Flows
,
Wiley
,
New York
.
21.
Sarimurat
,
M. N.
,
2008
, “
Analytical Models for Flow Control in Subsonic and Supersonic Diffusing Flow Paths Using Steady Blowing and Suction
,” Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY.
22.
Brocher
,
E.
,
1961
, “
The Jet-Flap Compressor Cascade
,”
ASME J. Basic Eng.
,
83
, pp.
401
407
.10.1115/1.3658980
23.
Bae
,
J. W.
,
Breuer
,
K. S.
, and
Tan
,
C. S.
,
2005
, “
Active Control of Tip Clearance Flow in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
352
362
.10.1115/1.1776584
24.
Bejan
,
A.
,
1997
,
Advanced Engineering Thermodynamics
,
Wiley
,
New York
.
You do not currently have access to this content.