Flows throughout different zones of turbines have been investigated using large eddy simulation (LES) and hybrid Reynolds-averaged Navier–Stokes-LES (RANS-LES) methods and contrasted with RANS modeling, which is more typically used in the design environment. The studied cases include low and high-pressure turbine cascades, real surface roughness effects, internal cooling ducts, trailing edge cut-backs, and labyrinth and rim seals. Evidence is presented that shows that LES and hybrid RANS-LES produces higher quality data than RANS/URANS for a wide range of flows. The higher level of physics that is resolved allows for greater flow physics insight, which is valuable for improving designs and refining lower order models. Turbine zones are categorized by flow type to assist in choosing the appropriate eddy resolving method and to estimate the computational cost.

References

References
1.
Jefferson-Loveday
,
R. J.
,
Tucker
,
P. G.
,
Nagabhushana Rao
,
V.
, and
Northall
,
J. D.
,
2012
, “
Differential Equation Specification of Integral Turbulence Length Scales
,”
ASME
Paper No. GT2012-68091.10.1115/GT2012-68091
2.
O'Mahoney
,
T.
,
Hills
,
N.
, and
Chew
,
J.
,
2012
, “
Sensitivity of LES Results From Turbine Rim Seals to Changes in Grid Resolution and Sector Size
,”
Prog. Aerosp. Sci.
,
52
, pp.
48
55
.10.1016/j.paerosci.2011.09.003
3.
Owen
,
J. M.
,
Zhou
,
K.
,
Pountney
,
O.
,
Wilson
,
M.
, and
Lock
,
G.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seal—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031012
.10.1115/1.4003070
4.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
Reducing the Performance Penalty Due to Turbine Inter-Platform Gaps
,”
ASME
Paper No. GT2006-90839.10.1115/GT2006-90839
5.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2007
, “
The Interaction of Turbine Inter-Platform Leakage Flow With the Mainstream Flow
,”
ASME J. Turbomach.
,
129
, pp.
303
310
.10.1115/1.2162592
6.
Pfau
,
A.
,
Treiber
,
M.
,
Sell
,
M.
, and
Gyarmathy
,
G.
,
2001
, “
Flow Interaction From the Exit Cavity of an Axial Turbine Blade Row Labyrinth Seal
,”
ASME J. Turbomach.
,
123
, pp.
342
352
.10.1115/1.1368124
7.
Pfau
,
A.
,
Schlienger
,
J.
,
Rusch
,
D.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2005
, “
Unsteady Flow Interactions Within the Inlet Cavity of a Turbine Rotor Tip Labyrinth Seal
,”
ASME J. Turbomach.
,
127
, pp.
679
688
.10.1115/1.2008973
8.
Pfau
,
A.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
Making Use of Labyrinth Interaction Flow
,”
ASME J. Turbomach.
,
129
, pp.
164
174
.10.1115/1.2218571
9.
Lampart
,
P.
,
2009
, “
Investigation of Endwall Flows and Losses in Axial Turbines. Part 1. Formation of Endwall Flows and Losses
,”
J. Theor. Appl. Mech.
,
47
(
2
), pp.
321
342
.
10.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
, p. 041003.10.1115/1.4002951
11.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
, pp.
196
205
.10.1115/1.2103094
12.
Tucker
,
P.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 1—Progress and Challenges
,”
Prog. Aerosp. Sci.
,
47
, pp.
522
545
.10.1016/j.paerosci.2011.06.004
13.
Tucker
,
P.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 2—LES and Hybrids
,”
Prog. Aerosp. Sci.
,
47
, pp.
546
569
.10.1016/j.paerosci.2011.07.002
14.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
031018
.10.1115/1.3148475
15.
Cumpsty
N. A.
, and
Greitzer
E. M.
,
2004
, “
Ideas and Methods of Turbomachinery Aerodynamics: A Historical View
,”
J. Propul. Power
,
20
, pp.
15
26
.10.2514/1.9176
16.
Chapman
,
D.
,
Hans
,
M.
, and
Pirtle
,
M. W.
,
1975
, “
Computers vs. Wind Tunnels for Aerodynamic Flow Simulations
,”
Astronaut. Aeronaut.
,
13
, pp.
12
35
.10.2514/3.49622
17.
Grinstein
,
F.
,
Fureby
,
C.
, and
DeVore
,
C. R.
,
2005
, “
On MILES Based on Flux-Limiting Algorithms
,”
Int. J. Numer. Methods Fluids
,
47
, pp,
1043
1051
.10.1002/fld.925
18.
Chapman
,
D. R.
,
1979
, “
Computational Aerodynamics, Development and Outlook
,”
AIAA J.
,
17
, pp.
1293
1313
.10.2514/3.61311
19.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman's Estimates Revisited
,”
Phys. Fluids
,
24
, p.
011702
.10.1063/1.3676783
20.
Tucker
,
P.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Jefferson-Loveday
,
R.
,
Tyacke
,
J.
, and
Liu
,
Y.
,
2010
, “
Hybrid LES Approach for Practical Turbomachinery Flows—Part 1: Hierarchy and Example Simulations
,”
ASME J. Turbomach.
,
134
(
2
), p.
021023.
10.1115/1.4003061
21.
Deck
,
S.
,
2011
, “
Recent Improvements in the Zonal Detached Eddy Simulation (ZDES) Formulation
,”
Theor. Comput. Fluid Dyn.
,
26
(6), pp.
523
550
.10.1007/s00162-011-0240-z
22.
Leschziner
,
M.
,
Li
,
N.
, and
Tessicini
,
F.
,
2009
, “
Simulating Flow Separation From Continuous Surfaces: Routes to Overcoming the Reynolds Number Barrier
,”
Philos.Trans. R. Soc. London, Ser. A
,
367
, pp.
2885
2903
.10.1098/rsta.2009.0002
23.
Eastwood
,
S.
,
Tucker
,
P.
,
Xia
,
H.
, and
Klostermeier
,
C.
,
2009
, “
Developing Large Eddy Simulation for Turbomachinery Applications
,”
Philos. Trans. R. Soc. London, Ser. A
,
367
, pp.
2999
3013
.10.1098/rsta.2008.0281
24.
James
,
S.
,
Zhu
,
J.
, and
Anand
,
M. S.
,
2006
, “
Large-Eddy Simulations as a Design Tool for Gas Turbine Combustion Systems
,”
AIAA J.
,
44
, pp.
674
686
.10.2514/1.15390
25.
Radhakrishnan
,
S.
,
Piomelli
,
U.
,
Keating
,
A.
, and
Silva Lopes
,
A.
,
2006
, “
Reynolds-Averaged and Large-Eddy Simulations of Turbulent Non-Equilibrium Flows
,”
J. Turbul.
,
7
(
63
), pp.
1
30
.10.1080/14685240601047736
26.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, p. 35.10.1088/1367-2630/6/1/035
27.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aérosp.
,
1
, pp.
5
21
.
28.
Tucker
,
P. G.
,
2003
, “
Differential Equation-Based Wall Distance Computation for DES and RANS
,”
J. Comput. Phys.
,
190
, pp.
229
248
.10.1016/S0021-9991(03)00272-9
29.
Tucker
,
P. G.
, and
Liu
,
Y.
,
2005
, “
Contrasting a Novel Temporally Oriented Hamilton-Jacobi-Equation-Based ILES Method With Other Approaches for a Complex Geometry Flow
,”
Int. J. Numer. Methods Fluids
,
48
, pp.
1241
1257
.10.1002/fld.990
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.10.2514/3.12149
31.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
, pp.
1760
1765
.10.1063/1.857955
32.
Kim
,
W.-W.
, and
Menon
,
S.
,
1999
, “
An Unsteady Incompressible Navier–Stokes Solver for Large Eddy Simulation of Turbulent Flows
,”
Int. J. Numer. Methods Fluids
,
31
, pp.
983
1017
.10.1002/(SICI)1097-0363(19991130)31:6%3C983::AID-FLD908%3E3.0.CO;2-Q
33.
Yoshizawa
,
A.
,
1993
, “
Bridging Between Eddy-Viscosity-Type and Second-Order Models Using a Two-Scale DIA
,”
Proceedings of the 9th International Symposium on Turbulent Shear Flow
, Kyoto, Japan, August 16–18, p.
23.1.1
6
.
34.
Tyacke
,
J. C.
,
2009
, “
Low Reynolds Number Heat Transfer Prediction Employing Large Eddy Simulation for Electronics Geometries
,” Ph.D. thesis, Civil and Computational Engineering Centre, Swansea University, Swansea, UK.
35.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
,
1996
, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
,
17
, pp.
108
115
.10.1016/0142-727X(95)00079-6
36.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
78
.10.1017/S0022112093002034
37.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
, pp.
301
318
.10.1016/0017-9310(69)90012-X
38.
Launder
,
B. E.
, and
Sharma
,
B. I.
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
, pp.
131
138
.10.1016/0094-4548(74)90150-7
39.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulent Closure
,”
J. Fluid Mech.
,
68
, pp.
537
566
.10.1017/S0022112075001814
40.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
, pp.
21
28
.10.1115/1.3446247
41.
Wissink
,
J. G.
, and
Rodi
,
W.
,
2004
, “
DNS of a Laminar Separation Bubble Affected by Free-Stream Disturbances
,”
Direct and Large-Eddy Simulation
,
Proceedings of the Fifth International ERCOFTAC Workshop on Direct and Large-Eddy Simulation
, Munich, August 27–29, pp.
213
220
.10.1007/978-1-4020-2313-2_23
42.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2011
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow, Turbul. Combust.
,
88
(1-2), pp.
19
44
.10.1007/s10494-011-9353-0
43.
Kacker
,
S. C.
, and
Whitelaw
,
J. H.
,
1971
, “
The Turbulence Characteristics of Two-Dimensional Wall-Jet and Wall-Wake Flows
,”
ASME J. Appl. Mech.
,
38
, pp.
239
252
.10.1115/1.3408749
44.
Grace
,
S. M.
,
Dewar
,
W. G.
, and
Wroblewski
,
D. E.
,
2004
, “
Experimental Investigation of the Flow Characteristics Within a Shallow Wall Cavity for Both Laminar and Turbulent Upstream Boundary Layers
,”
Exp. Fluids
,
36
, pp.
791
804
.10.1007/s00348-003-0761-3
45.
Brunn
,
H. H.
,
1995
,
Hot-Wire Anemometry
,
Oxford University Press
,
New York
.
46.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2006
, “
Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Two-Pass Internal Cooling Duct
,”
Intl. J. Heat Fluid Flow
,
27
, pp.
1
20
.10.1016/j.ijheatfluidflow.2005.07.002
47.
Geurts
,
B. J.
, and
Holm
,
D. D.
,
2003
, “
Regularization Modelling for Large-Eddy Simulation
,”
Phys. Fluids
,
15
, pp.
13
16
.10.1063/1.1529180
48.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.10.2514/6.1992-439
49.
Denecke
,
J.
,
Dullenkopf
,
K.
,
Wittig
,
S.
, and
Bauer
,
H.-J.
,
2005
, “
Experimental Investigation of the Total Temperature Increase and Swirl Development in Rotating Labyrinth Seals
,”
ASME
Paper No. GT2005-68677.10.1115/GT2005-68677
50.
Becz
,
S.
,
Majewski
,
M.
, and
Langston
,
L.
,
2003
, “
Leading Edge Modification Effects on Turbine Cascade Endwall Loss
,”
ASME
Paper No. GT2003-38898.10.1115/GT2003-38898
51.
Jefferson-Loveday
,
R. J.
,
Tucker
,
P. G.
,
Northall
,
J. D.
, and
Nagabhushana Rao
,
V.
,
2013
, “
Differential Equation Specification of Integral Turbulence Length Scales
,”
ASME J. Turbomach
,
135
(3)
, p. 031013.10.1115/1.4007479
52.
Bons
,
J.
,
Taylor
,
R.
,
McClain
,
S.
, and
Rivir
,
R.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
, pp.
739
748
.10.1115/1.1400115
53.
Kolmogorov
,
A. N.
,
1941
, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Dokl. Akad. Nauk SSSR
,
30
, pp.
299
303
.
54.
Gamard
,
S.
, and
George
,
W.
,
1999
, “
Reynolds Number Dependence of Energy Spectra in the Overlap Region of Isotropic Turbulence
,”
Flow, Turbul. Combust.
,
63
, pp.
443
477
.10.1023/A:1009988321057
55.
Tucker
,
P. G.
,
2001
,
Computation of Unsteady Internal Flows
,
Kluwer
,
Dordrecht
.
56.
Brandvik
,
T.
, and
Pullan
,
G.
,
2009
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME
Paper No. GT2009-60052.10.1115/GT2009-60052
57.
Medic
,
G.
, and
Sharma
,
O.
,
2012
, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
ASME
Paper No. GT2012-68878.10.1115/GT2012-68878
58.
Gourdain
,
N.
,
Gicquel
,
L. Y. M.
, and
Collado
,
E.
,
2012
, “
Comparison of RANS and LES for Prediction of Wall Heat Transfer in a Highly Loaded Turbine Guide Vane
,”
J. Propul. Power
,
28
, pp.
423
433
.10.2514/1.B34314
59.
Fujimoto
,
S.
,
2012
, “
Large Eddy Simulation of Film Cooling Flows Using Octree Hexahedral Meshes
,”
ASME
Paper No. GT2012-70090.10.1115/GT2012-70090
60.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. Kh.
, and
Travin
,
A. K.
,
2003
, “
Towards the Prediction of Noise From Jet Engines
,”
Int. J. Heat Fluid Flow
,
24
, pp.
551
561
.10.1016/S0142-727X(03)00049-3
61.
Murari
,
S.
,
Sunnam
,
S.
, and
Liu
,
J. S.
,
2012
, “
Steady State and Transient CFD Studies on Aerodynamic Performance Validation of a High Pressure Turbine
,”
ASME
Paper No. GT2012-68853.10.1115/GT2012-68853
62.
Rogers
,
S. E.
, and
Kwak
,
D.
,
1991
, “
An Upwind Differencing Scheme for the Steady-State Incompressible Navier–Stokes Equations
,”
Appl. Numer. Math.
,
8
, pp.
43
64
.10.1016/0168-9274(91)90097-J
You do not currently have access to this content.