Film-cooling is one of the most prevalent cooling technologies that is used for gas turbine airfoil surfaces. Numerous studies have been conducted to give the cooling effectiveness over ranges of velocity, density, mass flux, and momentum flux ratios. Few studies have reported flowfield measurements with even fewer of those providing time-resolved flowfields. This paper provides time-averaged and time-resolved particle image velocimetry data for a film-cooling flow at low and high density ratios. A generic film-cooling hole geometry with wide lateral spacing was used for this study, which was a 30 deg inclined round hole injecting along a flat plate with lateral spacing P/D = 6.7. The jet Reynolds number for flowfield testing varied from 2500 to 7000. The data indicate differences in the flowfield and turbulence characteristics for the same momentum flux ratios at the two density ratios. The time-resolved data indicate Kelvin–Helmholtz breakdown in the jet-to-freestream shear layer.

References

References
1.
Pietrzyk
,
J.R.
,
Bogard
,
D.G.
, and
Crawford
,
M.E.
,
1989
, “
Hydrodynamic Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications
,”
ASME J. Turbomach
,
111
(
2
), pp.
139
145
.10.1115/1.3262248
2.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.10.1115/1.2840938
3.
Waye
,
S. K.
, and
Bogard
,
D. G.
,
2006
, “
High Resolution Film Cooling Effectiveness Comparison of Axial and Compound Angle Holes on the Suction Side of a Turbine Vane
,”
ASME
Paper No. GT2006-90225.10.1115/GT2006-90225
4.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
.10.1115/1.2927678
5.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
6.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.10.1017/S0022112097007271
7.
Auf dem Kampe
,
T.
,
Völker
,
S.
,
Sämel
,
T.
,
Heneka
,
C.
,
Ladisch
,
H.
,
Schulz
,
A.
, and
Bauer
H.-J.
,
2011
, “
Experimental and Numerical Investigation of Flow Field and Downstream Surface Temperatures of Cylindrical and Diffuser Shaped Film Cooling Holes
,”
ASME
Paper No. GT2011-45106.10.1115/GT2011-45106
8.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
,
128
(
1
), pp.
141
149
.10.1115/1.2098768
9.
Tanahashi
,
M.
,
Hirayama
,
T.
,
Taka
,
S.
, and
Miyauchi
,
T.
,
2008
, “
Measurement of Fine Scale Structure in Turbulence by Time-Resolved Dual-Plane Stereoscopic PIV
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
792
802
.10.1016/j.ijheatfluidflow.2008.02.009
10.
Fawcett
,
R. J.
,
Wheeler
,
A. P. S.
,
He
,
L.
, and
Taylor
,
R.
,
2012
, “
Experimental Investigation Into Unsteady Effects on Film Cooling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021015
.10.1115/1.4003053
11.
Polanka
,
M.D.
,
1999
, “
Detailed Film Cooling Effectiveness and Three Component Velocity Field Measurements on a First Stage Turbine Vane Subject to High Freestream Turbulence
,” Ph.D. thesis, The University of Texas at Austin, Austin, TX.
12.
Eberly
,
M.
,
2012
, “
Time-Resolved Studies of High Density Ratio Film-Cooling Flows
,” M.S. thesis, The Pennsylvania State University, State College, PA.
13.
LaVision, 2013,
“LaVision—We Count on Photons
,” LaVision, Goettingen, Germany, accessed September 23, 2012, http://www.lavision.de/en/
14.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2006
,
Theory and Design for Mechanical Measurements
,
Wiley
,
New York
.
15.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
16.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
17.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
(
0
), pp.
S051
S060
.10.1007/s003480070007
18.
Harder
,
K. J.
, and
Tiederman
,
W. G.
,
1991
, “
Drag Reduction and Turbulent Structure in Two-Dimensional Channel Flows
,”
Philos. Trans. R. Soc. London, Ser. A
,
336
(
1640
), pp.
19
34
.10.1098/rsta.1991.0064
19.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.10.1115/1.2841410
20.
Baldauf
,
S.
Scheurlen
,
M.
Schulz
,
A.
and
Wittig
S.
, 2002, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Engine Like Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.10.1115/1.1504443
21.
Gritsch
,
M.
Schulz
,
A.
and
Wittig
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), p.
549
.10.1115/1.2841752
22.
Kohli
,
A.
, and
Bogard
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Injection
,”
ASME J. Turbomach.
,
119
(
2
), p.
352
.10.1115/1.2841118
23.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), p.
442
.10.1115/1.2927894
24.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
, pp.
620
627
.10.1115/1.3450752
25.
Issakhanian
,
E.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2012
, “
In-Hole and Mainflow Velocity Measurements of Low-Momentum Jets in Crossflow Emanating From Short Holes
,”
Exp. Fluids
,
53
(
6
), pp.
1765
1778
.10.1007/s00348-012-1397-y
You do not currently have access to this content.