Determination of heat loads is a key issue in the design of gas turbines. In order to optimize the cooling, an exact knowledge of the heat flux and temperature distributions on the airfoils surface is necessary. Heat transfer is influenced by various factors, like pressure distribution, wakes, surface curvature, secondary flow effects, surface roughness, free stream turbulence, and separation. Each of these phenomenons is a challenge for numerical simulations. Among numerical methods, large eddy simulations (LES) offers new design paths to diminish development costs of turbines through important reductions of the number of experimental tests. In this study, LES is coupled with a thermal solver in order to investigate the flow field and heat transfer around a highly loaded low pressure water-cooled turbine vane at moderate Reynolds number (150,000). The meshing strategy (hybrid grid with layers of prisms at the wall and tetrahedra elsewhere) combined with a high fidelity LES solver gives accurate predictions of the wall heat transfer coefficient for isothermal computations. Mesh convergence underlines the known result that wall-resolved LES requires discretizations for which y+ is of the order of one. The analysis of the flow field gives a comprehensive view of the main flow features responsible for heat transfer, mainly the separation bubble on the suction side that triggers transition to a turbulent boundary layer and the massive separation region on the pressure side. Conjugate heat transfer computation gives access to the temperature distribution in the blade, which is in good agreement with experimental measurements. Finally, given the uncertainty on the coolant water temperature provided by experimentalists, uncertainty quantification allows apprehension of the effect of this parameter on the temperature distribution.

References

1.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
.
2.
Lefebvre
,
A. H.
,
1999
,
Gas Turbines Combustion
,
Taylor & Francis
,
New York
.
3.
Schiele
,
R.
, and
Wittig
,
S.
,
2000
, “
Gas Turbine Heat Transfer: Past and Future Challenges
,”
J. Propul. Power
,
16
(
4
), pp.
583
589
.10.2514/2.5611
4.
Dunn
,
M.
,
2001
, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
, pp.
637
686
.10.1115/1.1397776
5.
Bunker
,
R. S.
,
2006
, “
Gas Turbine Heat Transfer: 10 Remaining Hot Gas Path Challenges
,”
Procceedings of the ASME Turbo Expo 2006
,
Barcelona, Spain, May 8–11
,
ASME
Paper No. GT2006-90002.10.1115/GT2006-90002
6.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
M.I.T. Press
,
Cambridge, MA
.
7.
Lumley
,
J. L.
,
1978
, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.10.1016/S0065-2156(08)70266-7
8.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
9.
Wilcox
,
D.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
, pp.
1299
1310
.10.2514/3.10041
10.
Hirsch
,
C.
,
1990
,
Numerical Computation of Internal and External Flows
, Vol.
2
.,
John Wiley & Sons
,
New York
.
11.
Sagaut
,
P.
,
2000
,
Large Eddy Simulation for Incompressible Flows
,
Springer-Verlag
,
Berlin
.
12.
Abu-Ghannam
,
B.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.10.1243/JMES_JOUR_1980_022_043_02
13.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.10.1115/1.2929110
14.
Johnson
,
M. W.
,
1994
, “
A Bypass Transition Model for Boundary Layers
,”
ASME J. Turbomach.
,
116
(
4
), pp.
759
764
.10.1115/1.2929470
15.
Smirnov
,
E.
, and
Smirnovsky
,
A.
,
2009
, “
Turbine Vane Cascade Heat Transfer Predictions Using a Modified Version of the γ-R˜eθt Laminar–Turbulent Transition Model
,”
Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems
,
Antalya, Turkey, August 9–14
.10.1615/ICHMT.2009.HeatTransfGasTurbSyst.370
16.
Wlassow
,
F.
,
Duchaine
,
F.
,
Leroy
,
G.
, and
Gourdain
,
N.
,
2010
, “
3D Simulation of Coupled Fluid Flow and Solid Heat Conduction for the Calculation of Blade Wall Temperature in a Turbine Stage
,”
ASME
Paper No. GT2010-22513.10.1115/GT2010-22513
17.
Lutum
,
E.
, and
Cottier
,
F.
,
2011
, “
Aerothermal Predictions on a Highly Loaded Turbine Blade Including Effects of Flow Separation
,”
Proceedings of the 9th European Turbomachinery Conference
,
Istanbul, Turkey, March 21–25
.
18.
Rozati
,
A.
,
2007
, “
Large Eddy Simulation of Leading Edge Film Cooling: Flow Physics, Heat Transfer, and Syngas Ash Deposition
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
19.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
,
Poinsot
,
T.
,
Bissieres
,
D.
, and
Bérat
,
C.
,
2007
, “
Comparison of LES, RANS and Experiments in an Aeronautical Gas Turbine Combustion Chamber
,”
Proc. Combust. Inst.
,
31
, pp.
3075
3082
.10.1016/j.proci.2006.07.067
20.
Sagaut
,
P.
, and
Deck
,
S.
,
2009
, “
Large-Eddy Simulation for Aeronadymics: Status and Perspectives
,”
Philos. Trans. R. Soc. Lond.
,
367
, pp.
2849
2860
.10.1098/rsta.2008.0269
21.
Leonard
,
T.
,
Duchaine
,
F.
,
Gourdain
,
N.
, and
Gicquel
,
L.
,
2010
, “
Steady/Unsteady Reynolds Averaged Navier–Stokes and Large Eddy Simulations of a Turbine Blade at High Subsonic Outlet Mach Number
,”
Proceedings of the ASME Turbo Expo
,
Glasgow, UK, June 14–18
,
ASME
Paper No. GT2010-22469.10.1115/GT2010-22469
22.
Duchaine
,
F.
,
Corpron
,
A.
,
Pons
,
L.
,
Moureau
,
V.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2009
, “
Development and Assessment of a Coupled Strategy for Conjugate Heat Transfer With Large Eddy Simulation: Application to a Cooled Turbine Blade
,”
Int. J. Heat Fluid Flow
,
30
(
6
), pp.
1129
1141
.10.1016/j.ijheatfluidflow.2009.07.004
23.
Bhaskaran.
,
R.
, and
Lele
,
S.
,
2010
, “
Large Eddy Simulation of Free-Stream Turbulence Effects on Heat Transfer to a High-Pressure Turbine Cascade
,”
J. Turbul.
,
11
(
6
), pp.
1
15
.10.1080/14685241003705756
24.
Maheu
,
N.
,
Moureau
,
V.
, and
Domingo
,
P.
,
2012
. “
High Fidelity Simulation of Heat Transfer Between a Turbulent Flow and a Wall
,”
Proceedings of the 9th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM9
),
Thessaloniki, Greece, June 6–8
.
25.
Collado
,
E.
,
Gourdain
,
N.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2012
, “
Effects of Free-Stream Turbulence on High Pressure Turbine Blade Heat Transfer Predicted by Structured and Unstructured LES
,”
J. Heat Mass Transfer
,
55
(
21–22
), pp.
5754
5768
.10.1016/j.ijheatmasstransfer.2012.05.072
26.
Heselhaus
,
A.
, and
Vogel
,
D. T.
,
1995
, “
Numerical Simulation of Turbine Blade Cooling With Respect to Blade Heat Conduction and Inlet Temperature Profiles
,”
Proceedings of the 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
San Diego, CA, July 10–12
,
AIAA
Paper No. 1995-3041.10.2514/6.1995-3041
27.
Sondak
,
D. L.
, and
Dorney
,
D. J.
,
2000
, “
Simulation of Coupled Unsteady Flow and Heat Conduction in Turbine Stage
,”
J. Propul. Power
,
16
(
6
), pp.
1141
1148
.10.2514/2.5689
28.
Papanicolaou
,
E.
,
Giebert
,
D.
,
Koch
,
R.
, and
Schultz
,
A.
,
2001
, “
A Conservation-Based Discretization Approach for Conjugate Heat Transfer Calculations in Hot-Gas Ducting Turbomachinery Components
,”
Int. J. Heat Mass Transfer
,
44
, pp.
3413
3429
.10.1016/S0017-9310(01)00017-5
29.
Garg
,
V.
,
2002
, “
Heat Transfer Research on Gas Turbine Airfoils at NASA GRC
,”
Int. J. Heat Fluid Flow
,
23
(
2
), pp.
109
136
.10.1016/S0142-727X(01)00144-8
30.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
,
2005
, “
Systematic Investigation on Conjugate Heat Transfer Rates of Film Cooling Configurations
,”
Int. J. Rotating Mach.
,
2005
(
3
), pp.
211
220
.10.1155/IJRM.2005.211
31.
Alonso
,
J. J.
,
Hahn
,
S.
,
Ham
,
F.
,
Herrmann
,
M.
,
Iaccarino
,
G.
,
Kalitzin
,
G.
,
LeGresley
,
P.
,
Mattsson
,
K.
,
Medic
,
G.
,
Moin
,
P.
,
Pitsch
,
H.
,
Schlüter
,
J.
,
Svard
,
M.
,
der Weide
,
E.
,
You
,
D.
, and
Wu
,
X.
,
2006
, “
CHIMPS: A High-Performance Scalable Module for Multi-Physics Simulation
,”
Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
,
Sacramento, CA, July 9–12
,
AIAA
Paper No. 2006-5274.10.2514/6.2006-5274
32.
Ladisch
,
H.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2009
, “
Heat Transfer Measurements on a Turbine Airfoil with Pressure Side Separation
,”
Proceedings of the ASME Turbo Expo 2009: Power for Land
,
Sea, and Air
,
Orlando, FL, June 8–12
,
ASME
Paper No. GT2009-59904.10.1115/GT2009-59904
33.
European Commision
,
2005
, “
Aero-Thermal Investigation on Turbine End-Wall and Blades
,” Report No. AST4-CT-2005-516113.
34.
Turner
,
A.
,
1970
, “
Heat Transfer Instrumentation
,” Technical Report No. AGARD-CP-73.
35.
Wittig
,
S.
,
Schulz
,
A.
, and
Bauer.
,
H.
,
1985
, “
Effects of Wakes on the Heat Transfer in Gas Turbine Cascades
,” Technical Report No. AGARD-CP-390.
36.
Schultz
,
M. S. A.
, and
Wittig
,
S.
,
2005
, “
Surface Roughness Effects on External Heat Transfer on a HP Turbine Vane
,”
ASME
Paper No. GT2004-53114.10.1115/GT2004-53114
37.
Cadieux
,
F.
,
Domaradzki
,
J.
,
Sayadi
,
T.
,
Bose
,
S.
, and
Duchaine
,
F.
,
2012
, “
DNS and LES of Separated Flows at Moderate Reynolds Numbers
,”
Proceedings of the American Physical Society 65th Annual Meeting of the APS Division of Fluid Dynamics
,
San Diego, CA, November 18–20
.
38.
Buis
,
S.
,
Piacentini
,
A.
, and
Déclat
,
D.
,
2005
, “
PALM: A Computational Framework for Assembling High Performance Computing Applications
,”
Concurr. Comput.
,
18
(
2
), pp.
231
245
.10.1002/cpe.914
39.
Piacentini
,
A.
,
Morel
,
T.
,
Thevenin
,
A.
, and
Duchaine
,
F.
,
2011
, “
Open-Palm: An Open Source Dynamic Parallel Coupler
,”
Proceedings of the 4th International Conference on Computational Methods for Coupled Problems in Science and Engineering
,
Kos, Greece, June 20–22
.
40.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed.,
R.T. Edwards
,
Flourtown, PA
.
41.
Ferziger
,
J. H.
, and
Perić
,
M.
,
1997
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
42.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: 1. The Basic Experiment
,”
Monthly Weather Rev.
,
91
, pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
43.
Chassaing
,
P.
,
2000
,
Turbulence en Mécanique des Fluides, Analyse du Phénomene en Vue de sa Modélisation a L'usage de L'ingénieur
,
Cépadues-Éditions
,
Toulouse, France
.
44.
Baya Toda
,
H.
,
Cabrit
,
O.
,
Balarac
,
G.
,
Bose
,
S. T.
,
Lee
,
J.
,
Choi
,
H.
, and
Nicoud
,
F.
,
2010
, “
A Subgrid-Scale Model Based on Singular Values for LES in Complex Geometries
,”
Proceedings of the Summer Program, Center for Turbulence Research, NASA Ames/Stanford University
.
45.
Nicoud
,
F. H. B. T.
,
Cabrit
,
O. S.
,
B.
, and
Lee
,
J.
,
2011
. “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
),
085106
.10.1063/1.3623274
46.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
47.
Schønfeld
,
T.
, and
Rudgyard
,
M.
,
1999
, “
Steady and Unsteady Flows Simulations Using the Hybrid Flow Solver AVBP
,”
AIAA J.
,
37
(
11
), pp.
1378
1385
.10.2514/3.14333
48.
Mendez
,
S.
, and
Nicoud
,
F.
,
2008
, “
Large-Eddy Simulation of a Bi-Periodic Turbulent Flow With Effusion
,”
J. Fluid Mech.
,
598
, pp.
27
65
.10.1017/S0022112007009664
49.
Selmin
,
V.
,
1987
, “
Third-Order Finite Element Schemes for the Solution of Hyperbolic Problems
,” Institut National de Recherche en Informatique et en Automatique, Technical Report No. 707.
50.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
,
New York
.
51.
Lamarque
,
N.
,
2007
, “
Schémas Numériques et Conditions Limites pour la Simulation aux Grandes Échelles de la Combustion Diphasique dans les foyers D'hélicoptere
,” Ph.D. thesis, INP Toulouse, Toulouse, France.
52.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Bérat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.10.1016/j.combustflame.2008.02.006
53.
Staffelbach
,
G.
,
Gicquel
,
L.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self-Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
, pp.
2909
2916
.10.1016/j.proci.2008.05.033
54.
Gicquel
,
L.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.10.1016/j.pecs.2012.04.004
55.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for Unsteady Calculations
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.10.1006/jcph.2000.6538
56.
Boileau
,
M.
,
Duchaine
,
F.
,
Jouhaud
,
J.-C.
, and
Sommerer
,
Y.
,
2013
, “
Large Eddy Simulation of Heat Transfer Around a Square Cylinder Using Unstructured Grids
,”
AIAA J.
,
51
(
2
), pp.
372
385
.10.2514/1.J051800
57.
Frayssé
,
V.
,
Giraud
,
L.
,
Gratton
,
S.
, and
Langou
,
J.
,
2005
, “
A Set of GMRES Routines for Real and Complex Arithmetics on High Performance Computers
,”
ACM Trans. Math. Softw.
,
31
(
2
), pp.
228
238
.10.1145/1067967.1067970
58.
Poinsot
,
T.
,
Echekki
,
T.
, and
Mungal
,
M. G.
,
1992
, “
A Study of the Laminar Flame Tip and Implications for Premixed Turbulent Combustion
,”
Combust. Sci. Technol.
,
81
(
1–3
), pp.
45
73
.10.1080/00102209208951793
59.
Granet
,
V.
,
Vermorel
,
O.
,
Leonard
,
T.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2010
, “
Comparison of Nonreflecting Outlet Boundary Conditions for Compressible Solvers on Unstructured Grids
,”
AIAA J.
,
48
(
10
), pp.
2348
2364
.10.2514/1.J050391
60.
Giles
,
M.
,
1997
, “
Stability Analysis of Numerical Interface Conditions in Fluid-Structure Thermal Analysis
,”
Int. J. Numer. Meth. Fluids
,
25
(
4
), pp.
421
436
.10.1002/(SICI)1097-0363(19970830)25:4<421::AID-FLD557>3.0.CO;2-J
61.
Xiu
,
D.
, and
Hesthaven.
,
J.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.10.1137/040615201
62.
Loeven
,
G.
,
Witteveen
,
J.
, and
Bijl
,
H.
,
2007
, “
Probabilistic Collocation: An Efficient Nonintrusive Approach for Arbitrarily Distributed Parametric Uncertainties
,”
Proceedings of the 45th AIAA Aerospace Sciences Meeting
,
Reno, NV, January 8–11
,
AIAA
Paper No. 2007-317.10.2514/6.2007-317
63.
Pecnik
,
R.
,
Witteveen
,
J.
, and
Iaccarino
,
G.
,
2011
, “
Uncertainty Quantification for Laminar-Turbulent Transition Prediction in RANS Turbomachinery Applications
,”
Proceedings of the 49th AIAA Aerospace Sciences Meeting
,
Orlando, FL, January 4–7
,
AIAA
Paper No. 2011-0660.10.2514/6.2011-660
64.
Christophe
,
J.
,
Sanjosé
,
M.
, and
Moreau
,
S.
,
2012
, “
Uncertainty Quantification of a Low-Speed Axial Fan Self-Noise
,”
14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-14)
,
Honolulu, HI, February 27–March 2
.
65.
Gnielinski
,
V.
,
1975
, “
Neue Gleichungen für den Wärme—Und den Stoffübergang in Turbulent Durchströmten Rohren und Kanälen
,”
Forsch. Ingenieurwes.
,
41
, pp.
8
16
.10.1007/BF02559682
You do not currently have access to this content.