Impinging jets have become an indispensable measure for cooling applications in gas turbine technology. The present study seeks to explore the flow field dynamics inside an enigine-relevant cooling passage of trapezoidal cross-section. The investigated geometry produces a highly complex flow field which was investigated employing particle image velocimetry (PIV). The experiments were accompanied by numerical simulations solving the Reynolds-averaged Navier–Stokes (RANS) equations with FLUENT using the low-Re k-ω-SST (shear stress transport) turbulence model. Additionally, time-resolved pressure measurements were performed utilizing Kulite pressure transducers. The spectral analysis of the transient pressure signal in conjunction with a proper orthogonal decomposition (POD) analysis of the PIV data allows for a detailed insight into the effects of geometric constraints on the fluid dynamic processes inside the geometry. The results are presented for a jet Reynolds number of 45,000 and display a qualitatively fair agreement between the experiments and numerical simulations. Nevertheless, the simulations predict flow features in particular regions of the geometry that are absent in the experiments. Despite the lack of conspicuous high energy modes, the flow was well suited for a POD analysis. Depending on the considered PIV plane, it could be shown that up to 25% of the flow field's total turbulent energy is contained in the first ten POD modes. Additionally, using the first 20 to 60 POD modes sufficed to reconstruct the flow fields with its governing features.

References

References
1.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
, pp.
1261
1272
.10.1016/0017-9310(65)90054-2
2.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
, Vol.
13
,
Academic
,
New York
, pp.
1
60
.
3.
Downs
,
S. J.
, and
James
,
E. H.
,
1987
, “
Jet Impingement Heat Transfer—Literature Survey
,”
ASME National Heat Transfer Conference
,
Pittsburgh, PA
, August 9–12, ASME Paper No. 87-HT-35.
4.
Han
,
B.
, and
Goldstein
,
R. J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.10.1111/j.1749-6632.2001.tb05849.x
5.
Angioletti
,
M.
,
Tommaso
,
R. M. D.
,
Nino
,
E.
, and
Ruoco
,
G.
,
2003
, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
46
, pp.
1703
1713
.10.1016/S0017-9310(02)00479-9
6.
Popiel
,
C. O.
, and
Trass
,
O.
,
1991
, “
Visualization of a Free and Impinging Round Jet
,”
Exp. Therm. Fluid Sci.
,
4
, pp.
253
264
.10.1016/0894-1777(91)90043-Q
7.
Cooper
,
D.
,
Jackson
,
D. C.
,
Launder
,
B. E.
, and
Liao
,
G.X.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment—I. Flow-Field Experiments
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2675
2684
.10.1016/S0017-9310(05)80204-2
8.
Nishino
,
K.
,
Samada
,
M.
,
Kasuya
,
K.
, and
Torii.
K.
,
1996
, “
Turbulence Statistics in the Stagnation Region of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
,
17
, pp.
193
201
.10.1016/0142-727X(96)00040-9
9.
Fairweather
,
M.
. and
Hargrave
,
G. K.
,
2002
, “
Experimental Investigation of an Axisymmetric, Impinging Turbulent Jet. 1. Velocity Field
,”
Exp. Fluids
,
33
, pp.
464
471
.10.1007/s00348-002-0479-7
10.
Geers
,
L. F. G.
,
Tummers
,
M. J.
, and
Hanjalic
,
K.
,
2004
, “
Experimental Investigation of Impinging Jet Arrays
,”
Exp. Fluids
,
36
(
6
), pp.
946
958
.10.1007/s00348-004-0778-2
11.
Geers
,
L. F. G.
,
Hanjalic
,
K.
, and
Tummers
,
M. J.
,
2006
, “
Wall Imprint of Turbulent Structures and Heat Transfer in Multiple Impinging Jet Arrays
,”
J. Fluid Mech.
,
546
, pp.
255
284
.10.1017/S002211200500710X
12.
Barata
,
J. M. M.
,
Durao
,
D. F. G.
, and
Heitor
,
M. V.
,
1992
, “
Velocity Characteristics of Multiple Impinging Jets Through a Cross-Flow
,”
ASME J. Fluids Eng.
,
114
, pp.
231
239
.10.1115/1.2910020
13.
Barata
,
J. M. M.
,
1996
, “
Fountain Flows Produced by Multiple Impinging Jets in a Crossflow
,”
AIAA J.
,
34
(
12
), pp.
2523
2530
.10.2514/3.13434
14.
Matsumoto
,
R.
,
Ishihara
,
I.
,
Yabe
,
T.
,
Ikeda
,
K.
,
Kikkawa
,
S.
, and
Senda
,
M.
,
1999
, “
Impingement Heat Transfer Within Arrays of Circular Jets Including the Effect of Crossflow
,”
Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference
, San Diego, CA, March 14–19, pp.
1
8
.
15.
Rhee
,
D. H.
,
Choi
,
J. H.
, and
Cho
,
H. H.
,
2003
, “
Flow and Heat (Mass) Transfer Characteristics in an Impingement/Effusion Cooling System With Crossflow
,”
ASME J. Turbomach.
,
125
, pp.
74
82
.10.1115/1.1519835
16.
Geers
,
L. F. G.
,
Tummers
,
M. J.
,
Hanjalic
,
K.
,
2005
, “
Particle Imaging Velocimetry-Based Identification of Coherent Structures in Normally Impinging Multiple Jets
,”
Phys. Fluids
,
17
, p.
055105
.10.1063/1.1900804
17.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
, pp.
539
575
.10.1146/annurev.fl.25.010193.002543
18.
Cordier
,
L.
, and
Bergmann
,
M.
,
2003
, “
Proper Orthogonal Decomposition: An Overview
,” (VKI Lecture Series 2003–03), von Karman Institute for Fluid Dynamics, Ensem, France.
19.
Hammad
,
K. J.
, and
Milanovic
,
I. M.
,
2009
, “
A POD Study of an Impinging Jet Flow Field
,”
Proceedings of the ASME Fluids Engineering Division Summer Meeting
,
Vail, CO
, August 2–6,
ASME
Paper No. FEDSM2009-78398.10.1115/FEDSM2009-78398
20.
Bilsky
,
A. V.
,
Kaipov
,
P. R.
,
Markovich
,
D. M.
, and
Tokarev
,
M. P.
,
2005
, “
Application of Proper Orthogonal Decomposition (POD) to the Analysis of Velocity Fields in Turbulent Impinging Jet Flow
,”
6th International Symposium on Particle Image Velocimetry
,
Pasadena, CA
, September 21–23.
21.
Kim
,
K. C.
,
Min
,
Y. U.
,
Oh
,
S. J.
,
An
,
N. H.
,
Seoudi
,
B.
,
Chun
,
H. H.
, and
Lee
,
I.
,
2007
, “
Time-Resolved PIV Investigation on the Unsteadiness of a Low Reynolds Number Confined Impinging Jet
,”
J. Visualization
,
10
(
4
), pp.
367
379
.10.1007/BF03181895
22.
Naik
,
S.
, and
Wardle
,
B. K.
,
2009
, “
Gas Turbine Airfoil
,”
European Patent Application EP2107215
,
Alstom Technology Ltd.
, Levallois-Perret, France.
23.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry—A Practical Guide
,
2nd ed.
,
Springer
,
Berlin
.
24.
Prasad
,
A. K.
, and
Jensen
,
K.
,
1995
, “
Scheimpflug Stereocamera for Particle Image Velocimetry to Liquid Flows
,”
Appl. Opt.
,
34
(
30
), pp.
7092
7099
.10.1364/AO.34.007092
25.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
The Effect of Sample Size, Turbulence Intensity and the Velocity Field on the Experimental Accuracy of Ensemble Averaged PIV Measurements
,”
4th International Symposium on Particle Image Velocimetry
,
Goettingen, Germany
, September 17–19.
26.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Part I
,”
Q. J. Mech. Appl. Math.
,
45
(
3
), pp. 561–571.
27.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Part II
,”
Q. J. Mech. Appl. Math.
,
45
(
3
), pp. 573–582.
28.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Part III
,”
Q. J. Mech. Appl. Math.
,
45
(
3
), pp. 583–590.
29.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), p.
317
.10.1016/0894-1777(88)90043-X
30.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
, pp.
544
552
.10.1115/1.1861921
31.
Hofmann
,
H. M.
,
Kaiser
,
R.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Calculations of Steady and Pulsating Impinging Jets—An Assessment of 13 Widely Used Turbulence Models
,”
Numer. Heat Transfer, Part B
,
51
(
6
), pp.
565
583
.10.1080/10407790701227328
32.
Rao
,
G.
,
Kitron-Belinkov
,
M.
, and
Levy
,
Y.
,
2009
, “
Numerical Analysis of a Multiple Jet Impingement System
,”
Proceedings of the ASME Turbo Expo
,
Orlando, FL
, June 8–12,
ASME
Paper No. GT2009-59719.10.1115/GT2009-59719
33.
Zu
,
Y. Q.
,
Yan
,
Y. Y.
, and
Maltson
,
J.
,
2009
, “
Numerical Study on Stagnation Point Heat Transfer by Jet Impingement in a Confined Narrow Gap
,”
ASME J. Heat Transfer
,
131
(
9
), p.
094504
.10.1115/1.3139183
34.
Roache
,
P. J.
,
1994
, “
Perspective—A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
35.
Schueren
,
S.
,
Hoefler
,
F.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
,
2011
, “
Heat Transfer in an Oblique Jet Impingement Configuration With Varying Jet Geometries
,”
Proceedings of the ASME Turbo Expo
,
Vancouver, BC, Canada
, June 6–10,
ASME
Paper No. GT2011-45169.10.1115/GT2011-45169
36.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms For Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.10.1017/S002211209900467X
37.
Tong
,
A. Y.
,
2003
, “
On the Impingement Heat Transfer of an Oblique Free Surface Plane Jet
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2077
2085
.10.1016/S0017-9310(02)00505-7
38.
Donaldson
,
C. P.
, and
Snedeker
,
R. S.
,
1971
, “
A Study of Free Jet Impingement—Part 1: Mean Properties of Free and Impinging Jets
,”
J. Fluid Mech.
,
45
, pp.
281
319
.10.1017/S0022112071000053
39.
Crafton
,
J.
,
Campbell
,
C.
,
Sullivan
,
J.
, and
Elliott
,
G.
,
2006
, “
Pressure Measurements on the Impingement Surface of Sonic and Sub-Sonic Jets Impinging Onto a Flat Plate at Inclined Angles
,”
Exp. Fluids
,
40
, pp.
697
707
.10.1007/s00348-006-0107-z
40.
Sparrow
,
E. M.
, and
Lovell
,
B. J.
,
1980
, “
Heat Transfer Characteristics of an Obliquely Impinging Circular Jet
,”
ASME J. Heat Transfer
,
102
, pp.
202
209
.10.1115/1.3244261
You do not currently have access to this content.